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Abstract 

Background Artificial intelligence (AI) that utilizes deep learning (DL) has potential for systemic disease prediction 
using retinal imaging. The retina’s unique features enable non‑invasive visualization of the central nervous system 
and microvascular circulation, aiding early detection and personalized treatment plans for personalized care. This 
review explores the value of retinal assessment, AI‑based retinal biomarkers, and the importance of longitudinal pre‑
diction models in personalized care.

Main text This narrative review extensively surveys the literature for relevant studies in PubMed and Google Scholar, 
investigating the application of AI‑based retina biomarkers in predicting systemic diseases using retinal fundus pho‑
tography. The study settings, sample sizes, utilized AI models and corresponding results were extracted and analysed.

This review highlights the substantial potential of AI‑based retinal biomarkers in predicting neurodegenerative, 
cardiovascular, and chronic kidney diseases. Notably, DL algorithms have demonstrated effectiveness in identifying 
retinal image features associated with cognitive decline, dementia, Parkinson’s disease, and cardiovascular risk factors. 
Furthermore, longitudinal prediction models leveraging retinal images have shown potential in continuous disease 
risk assessment and early detection. AI‑based retinal biomarkers are non‑invasive, accurate, and efficient for disease 
forecasting and personalized care.

Conclusion AI‑based retinal imaging hold promise in transforming primary care and systemic disease management. 
Together, the retina’s unique features and the power of AI enable early detection, risk stratification, and help revo‑
lutionizing disease management plans. However, to fully realize the potential of AI in this domain, further research 
and validation in real‑world settings are essential.
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Background
Artificial intelligence (AI) is a branch of computer sci-
ence that was developed in the 1950s with the goal 
of creating intelligent machines [1]. Machine learn-
ing (ML), a subset of AI, involves algorithms that 
learn from examples rather than being manually pro-
grammed [1]. On the other hand, deep learning (DL) is 
built upon the artificial neural networks (ANN), which 
mimic the functional structure of a human central 
nervous system (CNS) [1]. In DL, a single deep neural 
network can gather data as well as learn to separate out 
features that are appropriate for specific classification 
task and then categorize them [1]. In essence, the key 
distinction between ML and DL lies in how they learn 
and process information. ML relies on algorithms to 
perform task without explicit programming, while DL 
employs a complex algorithmic structure inspired by 
the human brain [1].

This understanding of AI, ML and DL forms the foun-
dation for their application in ophthalmology, particu-
larly in the realm of retinal imaging for systemic disease 
prediction and diagnosis.

Artificial intelligence (AI) and DL techniques with 
ophthalmology have gained momentum, capitalizing on 
the retina’s unique role as a direct window into the CNS 
and microvascular circulation [2]. Retinal changes have 
been linked to systemic conditions like cardiovascular 
disease (CVD) and neurological disorders, evidenced by 
vascular tortuosity and retinal nerve fiber layer thinning 
[3, 4], prompting exploration of AI-driven retinal imag-
ing for systemic disease prediction and diagnosis. Beyond 
its visual significance, the retina holds profound insights 
into overall health, with robust connections established 
between retinal findings and conditions such as hyper-
tension, diabetes mellitus (DM), CVD, and neurode-
generative disorders including Alzheimer’s disease (AD) 
[5–7]. This underlines the retina’s potential as an invalu-
able diagnostic tool for early detection and intervention, 
emphasizing its pivotal role in reshaping disease assess-
ment and risk evaluation.

In essence, a retinal biomarker is an objective measure 
used in predicting, evaluating, diagnosing, and planning 
treatment for various medical conditions. It is essential to 
note that this concept of biomarkers predates the work 
of Cheung et al. [8], who made a notable contribution in 
elaborating on the concept. DL is transforming the field 
of retinal biomarkers by utilizing extensive datasets and 
powerful computational algorithms to derive valuable 
insights from retinal imaging [8]. DL proficiency in learn-
ing intricate image features leads to the developing of a 
“retinal fingerprint” for diseases [8]. This profound analy-
sis of retinal images empowers DL models to construct 
robust predictive frameworks for systemic diseases, 

revolutionizing disease detection and offering a powerful 
tool for precise diagnostics [8].

Central to AI’s potential is its longitudinal predic-
tive prowess, which holds distinct advantages in the 
shift towards value-based healthcare. Utilizing baseline 
retinal photos, longitudinal prediction models forecast 
the likelihood of future systemic diseases such as CVD 
and chronic kidney disease (CKD) [9]. By continuously 
assessing disease risk, these models enable timely inter-
ventions, personalized treatments, and optimized patient 
outcomes [10]. AI’s unparalleled ability for longitudinal 
prediction lies in its innate capacity to uncover hidden 
trends and subtle shifts that evade human perception 
[10].

Unlike cross-sectional prediction reliant on single data 
point, longitudinal prediction quantifies and anticipates 
disease progression, thereby transforming disease man-
agement and heralding a new era of precision medicine 
[10]. AI has demonstrated significant promise in quantifi-
able risk assessment in specific contexts, where DL mod-
els have been rigorously compared to human assessment, 
indicating its potential to enhance disease prediction and 
management strategies [11].

Here, we aim to explore the traditional value of the ret-
ina for systemic disease assessment, examine the poten-
tial of AI-based retinal biomarkers in predicting various 
systemic diseases, and emphasize the importance of lon-
gitudinal prediction models for early detection and per-
sonalized care. We will review relevant studies that have 
utilized DL algorithms on longitudinal data to forecast 
the incidence of systemic diseases, including hyperten-
sion, DM, CVD, AD, Parkinson’s disease (PD), and CKD. 
By understanding the current landscape and challenges 
in this emerging field, we can pave the way for future 
advancements and applications of AI in ophthalmology 
for improved patient care.

Main text
Electronic bibliographic searches in PubMed and Google 
Scholar up to 20 June 2023 were carried out for this nar-
rative review. MeSH terms and all-field search terms were 
searched for the following criteria: “artificial intelligence”, 
“deep learning”, “systemic disease”, “cardiovascular dis-
ease”, “neurodegenerative disease”, “retinal imaging”, “eye”, 
and “longitudinal”, “fundus photographs”. The search was 
supplemented further by using references listed in the 
publications that were identified. We excluded abstracts, 
correspondence, opinions, editorials, letters, cross-
sectional studies, and studies involving optical coher-
ence tomography (OCT) scans from our selection. Only 
papers in the English language were used in this review.

Data extracted include study setting details (study 
name, first author, year of publication, study design, study 
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type, adjusted variables in the model), study popula-
tion (sample size, internal dataset, and external dataset), 
application (name of systemic disease, disease category, 
outcome formality, definition of the retinal biomarker), 
AI model used (name of the neural network, training 
platform), study results and their conclusions (Tables  1, 
2 and 3).

Neurodegenerative diseases
The retina shares developmental origins, anatomical 
features, and physiological properties with vital organs, 
such as the brain. It can be considered an extension of 
the CNS [24, 25]. These properties include microvascu-
lar architecture, regulation of blood flow, the function 
of vascular barriers, and the crucial role of neurovascu-
lar coupling responses in maintaining homeostasis [24, 
25]. The intimate connection between the CNS and the 
microcirculation in the brain also has a significant and 
direct influence on the microcirculation within the ret-
ina [24, 25]. This holds significant implications for the 
detection and understanding of various neurodegenera-
tive conditions, including PD and AD, which primarily 
affect the brain and spinal cord [26]. Research studies 
have shown that certain ocular indicators can be corre-
lated with early-stage cognitive impairment, shedding 
light on the potential role of ocular assessments in the 
early detection of cognitive decline [27]. Thinning of the 
retinal nerve fiber layer has been observed in individu-
als with cognitive impairment, suggesting a potential link 
between retinal changes and early-stage cognitive decline 
[15]. An investigation into the visual abnormalities in PD 
have provided valuable insights [28]. Extensive research 
indicates that retinal dopamine deficiency significantly 
contributes to the visual impairments experienced by PD 
patients, including deficits in acuity, contrast sensitivity, 
and color perception. This is supported by evidence such 
as reduced dopamine innervation around the fovea [27], 
decreased retinal dopamine concentration, thinner inner 
retinal layers, reduced retinal electrical activity [28–31]. 
Additionally, the presence of misfolded α-synuclein, 
a hallmark of PD, in the inner retinal layer further sup-
ports the notion of retinal involvement in the disease [28, 
32]. Other studies have also shown that OCT-measured 
retinal thickness is associated with frontal temporal lobe 
dementia and the severity of the disease is correlated 
with retinal thinning [33].

Role of retinal biomarkers in neurodegenerative disease 
without AI
Invasive techniques were used in the early diagnosis 
of AD, including positron emission tomography (PET) 
scans and cerebrospinal fluid (CSF) analysis, which pose 
a risk to patients [34]. These methods are expensive and 

have poor sensitivity, often necessitating postmortem 
histological examination for a conclusive diagnosis [35]. 
Recent studies, however, suggest that non-invasive meth-
ods, notably retinal imaging, can be extremely useful in 
identifying AD.

Retinal imaging techniques such as OCT, opti-
cal coherence tomography angiography (OCTA), and 
dynamic vessel analysis have emerged as promising non-
invasive methods to investigate functional and structural 
retinal biomarkers associated with AD and vascular cog-
nitive impairment and dementia [36]. Retinal imaging 
allows for a non-invasive examination of the anatomical 
and functional changes impacting the brain, making AD 
detection more practical and affordable.

In the last two decades, significant progress has been 
made in the field of retinal imaging. The development 
of semiautomated software has enabled more precise 
quantitative measurement of retinal vessel calibres from 
retina fundus photographs. This non-invasive approach 
has proven to be extremely valuable in identifying AD 
and exploring its association with cognitive function [7, 
35, 37–39]. However, most of these studies often adopt a 
cross-sectional approach design [7, 35, 37–39], with only 
a few longitudinal studies [40] investigating the detection 
of subtle changes in the link between retinal vessel cali-
bres and the risk of cognitive decline and dementia [40]. 
Consequently, the absence of longitudinal data hinders 
the ability to draw definitive conclusions.

Furthermore, the use of semiautomated retinal ves-
sel measurement software has its own limitations. This 
software heavily relies on human input and is a time-con-
suming and error prone procedure [41, 42]. As a result, 
the variability in measuring retinal vessel calibre could 
have contributed to inconsistent findings [41, 42].

AI‑driven retinal biomarkers for neurodegenerative 
diseases
AI-based retinal biomarkers have emerged as a promis-
ing approach for the early detection and monitoring of 
neurodegenerative diseases. Several studies have dem-
onstrated the effectiveness of AI-based approaches in 
predicting and diagnosing neurodegenerative diseases 
using retinal imaging data (Table 1). A prospective study 
conducted by Cheung et  al. [12], which utilized a DL 
algorithm on retinal photographs, investigated the rela-
tionship between DL retinal vessel calibre measurement 
and the risk of cognitive decline and dementia [12]. Their 
study adds to the growing body of evidence that narrow 
retinal arteriolar calibre at baseline is associated with an 
increased risk of cognitive decline, and it is also found to 
be predictive of future dementia development [12]. This 
longitudinal approach highlights the potential of retinal 
imaging and vessel assessment as non-invasive tools for 
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early screening and stratification of individuals suscepti-
ble to cognitive decline and dementia.

In another study, a DL algorithm was employed to 
examine the association between the retinal age gap (reti-
nal age–chronological age) and the risk of developing PD 
measured through retinal images. The finding revealed 
that an increase of one year in the retinal age gap was 
independently associated with a 10% higher risk of PD 
[13, 43]. The study’s results highlighted the potential of 
the retinal age gap, measured using a DL algorithm, as 
a promising biomarker for identifying individuals at a 
higher risk of developing PD. The use of the retinal age 
gap, a non-invasive and cost-effective measure obtained 
through retinal imaging, offers an opportunity for large-
scale screening. However, this study’s limitations include 
selection bias due to a healthier and younger participant 
sample from the UK Biobank, limited incident PD cases 
for subgroup analysis, the absence of longitudinal retinal 
age gap data, and the possibility of unaccounted residual 
confounders [13].

Additionally, the AlzEye study [14] aims to integrate 
longitudinal retinal imaging data from Moorfields Eye 
Hospital NHS Foundation Trust with systemic disease 
data from hospital admissions. By linking these data-
sets together, the primary focus of the analysis will be on 
CVDs and dementia, with the objective of uncovering 
hidden retinal signatures that can facilitate earlier detec-
tion and risk management [14]. AlzEye study’s limita-
tions include potential biases from reliance on hospital 
admission data, which may not fully capture the general 
population and could lead to under-recording of crucial 
variables as well as the inherent selection bias associated 
with the AlzEye cohort, which consists of individuals 
with definite or suspected ophthalmic disease, potentially 
limiting the external validity of the findings [14].

The work conducted by Cheung et  al. [15] presents a 
significant breakthrough in the field of AD detection. 
Traditional methods for diagnosing AD are known for 
their complexity and invasiveness, often involving PET 
scans, CSF collection, and plasma assays to measure bio-
markers such as amyloid β and phosphorylated tau [15, 
44]. In contrast, this study introduced a novel approach 
that harnesses the capabilities of DL, specifically tailored 
to analyse retinal photographs [15]. The study’s meth-
odology involved the compilation of data from 11 sepa-
rate studies, amalgamating retinal images from both AD 
patients and healthy subjects. During the model’s internal 
validation, impressive results were achieved, with accu-
racy of 83.6%, sensitivity of 93.2%, specificity of 82.0%, 
and an area under the receiver operating characteristic 
curve (AUROC) of 0.93 [15]. Subsequent testing across 
diverse datasets demonstrated accuracy levels ranging 
from 79.6% to 92.1%, accompanied by AUROCs spanning 

from 0.73 to 0.91 [15]. Additionally, the DL algorithm 
exhibited the capability to distinguish between partici-
pants with positive and negative amyloid β status [15]. 
This research signifies a pivotal advancement in AD 
screening, providing an innovative and non-invasive 
means of early detection using retinal images [15]. How-
ever, the study has limitations, including a small training 
dataset, potential labelling inaccuracies in the clinician-
derived diagnosis, unaccounted biases, and variable 
model performance across testing cohorts [15]. None-
theless, it represents a groundbreaking approach in AD 
detection using retinal images, offering a promising non-
invasive screening method [15].

Cardiovascular diseases (CVD)
The retina shares embryological, anatomical, and physi-
ological characteristics with vital organs such as the brain 
and kidneys, making it a valuable source of information 
about the systemic microvasculature [45]. Through the 
analysis of retinal vessels, which indirectly reflect the 
state of the systemic microvasculature, valuable informa-
tion can be obtained concerning microvascular altera-
tions that commonly occur prior to the development of 
macrovascular disorders such as stroke and ischemic 
heart disease [46].

Role of retinal biomarkers in CVD without AI
Retinal studies have revealed associations between reti-
nal changes and various systemic CVDs. For instance, 
diabetic retinopathy (DR) and hypertensive retinopathy, 
both well-established retinal diseases, have been associ-
ated with premature morbidity and mortality of CVDs 
[47–49]. For instance, DR, which primarily affects indi-
viduals with poorly controlled diabetes and/or prolonged 
diabetes duration, highlights the intricate relationship 
between retinal alterations and systemic health. By iden-
tifying and characterizing these retinal biomarkers, clini-
cians gain insights into an individual’s health status and 
disease risk, enabling timely interventions [50, 51].

One limitation of traditional methods is the subjectiv-
ity and potential variability introduced by human visual 
perception. Different individuals may have varying levels 
of expertise and subjective interpretations when analys-
ing retinal images. This can lead to inconsistencies and 
potential errors in identifying and quantifying specific 
retinal changes associated with CVDs [19].

In summary, traditional retinal studies helped lay the 
foundation for understanding the association between 
retinal changes and systemic diseases, including CVD. 
These studies have demonstrated the potential of reti-
nal imaging as a non-invasive tool for early detection, 
risk assessment and monitoring of various systemic 
conditions.
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AI‑driven retinal biomarkers for CVD
Research incorporating DL techniques demonstrate 
promising outcomes in predicting and diagnosing CVD 
through retinal imaging. CVD events were characterized 
as instances of hospitalization or mortality resulting from 
specific conditions such as myocardial infarction, stroke, 
unstable angina, transient ischemic attack, peripheral 
vascular disease, acute coronary heart disease, as well 
as procedures including coronary, carotid, or peripheral 
artery revascularizations, and major associated amputa-
tions [52]. For instance, DL showcases a robust correla-
tion between fundus image features and CVD risk [52], 
introducing a new dimension to the existing compre-
hension of retinal biomarkers. Notably, integrating a DL 
score into predictive models along with conventional 
clinical risk factors subtly yet significantly enhances the 
prediction of CVD risk for individuals with diabetes [52].

One study from Table  2, by Rim et  al., developed a 
DL-based algorithm to predict cardiovascular risk using 
retinal photographs [16]. Their algorithm, RetiCAC, 
outperformed single clinical parameters, such as age, 
glucose, or smoking status in predicting the presence of 
coronary artery calcium (CAC) [16] with an AUC of 0.742 
[16, 17]. Additionally, the study evaluated the synergy 
between RetiCAC and the pool cohort equation (PCE), 
a well-established risk stratification framework endorsed 
by the American College of Cardiology/American Heart 
Association (ACC/AHA) guidelines [53, 54]. When inte-
grating RetiCAC with PCE, the researchers observed 
an improved risk stratification for individuals classified 
within the intermediate and borderline risk groups. The 
study suggests that retinal photograph-based DL can 
serve as an alternative measure of CAC, particularly in 
low-resource settings [16, 17]. Additionally, it is nota-
ble that the study acknowledges its own limitations. The 
study encompasses a diverse range of ethnicities, includ-
ing those in Singapore (comprising predominantly Chi-
nese, Malay, and Indian populations), South Korea, and 
the United Kingdom, but broader ethnic representation 
could enhance its validity [16]. A following study led by 
Tseng RMWW et al. validates Reti-CVD (formerly Reti-
CAC) as a promising biomarker for identifying individu-
als with a 10% or higher 10-year CVD risk and enhancing 
risk assessment for those in the borderline group (risk of 
7.5%–10%). This is particularly relevant when consider-
ing traditional risk calculators like QRISK3, a clinical 
algorithm used to estimate 10-year CVD risk [17]. This 
study emphasizes the potential of Reti-CVD to advance 
cardiovascular risk stratification [17].

In another study, Diaz-Pinto et al. [55] developed a sys-
tem that utilizes retinal photographs and patient demo-
graphic data to estimate cardiac indices [55]. The study 
presents a system that has a potential in predicting 

future myocardial infarction (MI) events during rou-
tine ophthalmic visits, by estimating the left ventricular 
mass (LVM) and left ventricular end-diastolic volume 
(LVEDV) [55]. The ability to predict forthcoming MI 
events from retinal images in the UK Biobank popula-
tion demonstrated a sensitivity of 0.74, specificity of 0.72, 
and precision/positive predictive value (PPV) of 0.68 
when considering only age and gender as supplementary 
demographic factors [55]. In the Age-Related Eye Dis-
ease Study (AREDS) population, the approach’s sensitiv-
ity, specificity, and precision/PPV for predicting future 
MI events from retinal images were 0.70, 0.67, and 0.67, 
respectively, following the exclusion of all age-related 
macular degeneration (AMD) cases [55]. By incorporat-
ing cardiac indices and demographic data, the system 
demonstrated improved accuracy in predicting MI com-
pared to using demographic data alone [55].

Cheung et  al. [19] conducted a comprehensive study 
on the use of DL models to automatically measure retinal 
vessel calibre in retinal photographs, aiming to evaluate 
the correlation with CVD risk [19]. The research involved 
a diverse dataset with a substantial number of images 
collected from various ethnicities and countries. The DL 
models exhibited strong agreement with expert human 
graders in accurately measuring retinal vessel calibre 
[19]. Moreover, the models demonstrated comparable or 
superior performance to human graders in associating 
retinal vessel calibre with key CVD risk factors, includ-
ing blood pressure, body mass index, total cholesterol, 
and glycated haemoglobin levels [19]. Notably, the study 
revealed that the initial measurements obtained through 
the DL system were prospectively linked to incident CVD 
in retrospectively analysed datasets. However, the study 
by Cheung et  al. [19] has several limitations. They only 
trained and tested the DL model on gradable retinal pho-
tographs, potentially excluding ungradable images that 
could provide valuable data [19]. Additionally, the study 
relied on human measurements as ground-truth labels, 
introducing the possibility of intergrader variability 
affecting the model’s performance and accuracy [19].

In the study by Rudnicka AR et  al. [20], the authors 
aimed to enhance the understanding of the relation-
ship between retinal vasculometry (RV) and CVD risk 
by developing an algorithm that utilized DL methods 
to distinguish between arterioles and venules, and thus 
incorporating AI-enabled retinal vasculometry as an 
alternative biomarker [20]. This AI-based retinal vascu-
lometry employed a fully automated system known as 
QUARTZ [20]. QUARTZ utilized a supervised ML model 
to create an image quality score, and DL algorithms 
were used to distinguish between arterioles and venules 
[20]. The study compared the performance of Framing-
ham risk score (FRS) for incident stroke and MI with the 
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addition of RV to FRS, as well as a simpler model based 
on RV, age, smoking status, and medical history. How-
ever, the addition of RV to FRS did not improve the pre-
diction of incident stroke and MI in either cohort [20]. 
Interestingly, the simpler RV model performed equally or 
better than FRS [20]. The study concluded that RV could 
serve as an alternative predictive biomarker for vascular 
health without the need for invasive blood sampling or 
blood pressure measurement [20]. However, it is impor-
tant to acknowledge the study’s limitations, including 
its reliance on cohorts who are considered healthy with 
low event rates and a predominantly White population, 
which may affect the generalizability of the findings [20]. 
Further validation in more diverse and high-risk cohorts 
is needed to confirm its applicability in broader popula-
tions [20].

Another study by Poplin et  al. [56] demonstrated the 
potential of DL models to extract cardiovascular risk fac-
tors from retinal photographs. The results showed that 
the DL models were able to accurately predict various 
risk factors, including age, gender, smoking status, sys-
tolic blood pressure, and major adverse cardiac events 
with AUC 0.73 [95% confidence interval (CI):0.690.77] 
[56]. These predictions were based on anatomical fea-
tures present in the retina, such as blood vessels and the 
optic disc. However, the study acknowledges its limita-
tions, including a relatively small dataset with narrow 
field of view images and missing essential clinical inputs, 
emphasizing the need for validation on larger, more 
diverse datasets to enhance the accuracy and generaliz-
ability of their DL models [56].

A study conducted by Chang et  al. [18] created a DL 
model that could predict atherosclerosis using retinal 
images and examined its clinical complications. The 
findings showed that individuals with higher DL-fundu-
scopic atherosclerosis score (FAS) had an increased risk 
of CVD disease related deaths compared to those with 
lower DL-FAS scores [18]. The DL-FAS also improved 
the prediction of CVD deaths when combined with the 
Framingham risk score (FRS), a commonly used risk 
assessment tool [18]. However, the limitation of the study 
is that it is a single-center database which comprised 
solely of South Koreans, and thus limits its generalizabil-
ity, a critical concern given the dependency of CVD risk 
on ethnicity [57].

Chronic kidney disease (CKD)
CKD frequently presents insidiously, with patients typi-
cally remaining asymptomatic during the early stages for 
prolonged periods, leading to low awareness of the con-
dition [58]. However, as the disease progresses, patients 
may experience symptoms such as polyuria or fatigue due 
to anaemia, highlighting a critical stage where the risk of 

complications and progression to end-stage renal disease 
(ESRD) significantly increases [59]. The assessment of 
kidney function primarily relies on glomerular filtration 
rate (GFR) measurements, often calculated using serum 
creatinine concentration through specific formulas such 
as the Chronic Kidney Disease Epidemiology Collabo-
ration (CKD-EPI) equation [59]. Additionally, CKD can 
be detected by abnormal results in routine blood tests, 
such as elevated urea nitrogen, cystatin C levels, and the 
presence of protein or albumin in urine [59]. By harness-
ing DL’s analytical capabilities for retinal imaging, which 
shares, anatomical, embryological, and physiological 
characteristics with vital organs such as the kidneys [45], 
researchers can explore the potential link between retinal 
microvascular alterations and early stages of CKD. These 
findings hold promise for uncovering novel prognostic 
markers and risk stratification tools, empowering clini-
cians to intervene early and mitigate the burden of CKD-
related complications.

Prior research on retinal biomarkers without AI
Prior to the use of AI, studies examined the relationship 
between elevated blood urea nitrogen and creatinine lev-
els and the occurrence of specific eye conditions, includ-
ing posterior subcapsular cataract [60], late AMD [61], 
and DR [62], suggesting potential associations with kid-
ney function changes. Conversely, alterations in retinal 
signs have been observed to potentially indicate changes 
in kidney function. The utilization of AI can help early 
identification with retinal imaging and can help identify 
and minimize vascular damage to the kidneys.

AI‑driven retinal biomarkers for CKD
The longitudinal studies that evaluate retinal biomark-
ers that can be utilized for CKD assessment have been 
summarized in Table 3. Zhang et  al. [21] utilized a DL-
based model to assess the risk of progressing to advanced 
(stage 3) and severe (stages 4 and 5) CKD over a span of 
six years within a longitudinal cohort. Additionally, their 
research, as presented in Table 3, focused on predicting 
the development of CKD in the same cohort, incorporat-
ing baseline retinal imaging and clinical metadata [21]. 
The findings revealed that the combined model, which 
integrated risk scores extracted from retinal images and 
clinical metadata, demonstrated significantly enhanced 
predictive performance compared to utilizing clinical 
metadata alone [21]. This indicates the potential of reti-
nal images as a valuable screening tool for risk assess-
ment and personalized treatment in the context of CKD. 
This was seen in the model, where the AI was used in the 
identification of type 2 diabetes mellitus (T2DM) using 
retinal images of T2DM from healthy controls with high 
area under the curve (AUC) values for the metadata-only 
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model (AUC = 0.828), the fundus image-only model 
(AUC = 0.923), and the combined model (AUC = 0.929) 
on the internal test set [21]. Additionally, the DL model 
successfully stratified patients into low-, medium- and 
high-risk groups for developing CKD [21]. This demon-
strates the potential for early detection and risk strati-
fication using AI-based retinal biomarkers. However, 
training of the DL model was limited to a predominately 
Chinese population [21]. The study can benefit from 
additional validation with an external multi-ethnic popu-
lation [21].

Additionally, in another study by Zhang et al. [23], who 
developed a DL model to assess retinal age, the difference 
between model-based retinal age and chronological age, 
termed the retinal age gap, was used to predict the risk 
of ESRD. Through Cox proportional hazards regression 
models, they observed that a one-year increase in the ret-
inal age gap corresponded to a 10% rise in the risk of inci-
dent ESRD [hazard ratio (HR) = 1.10, 95% CI: 1.03–1.17] 
[23]. Given the suitability of retinal images for early pre-
diction and longitudinal assessment, the study not only 
provided valuable data for the estimation of the progres-
sion of ESRD but also served as a predictive indicator of 
mortality [23]. Therefore, retina images have the capabil-
ity to serve as a screening method for evaluating risk and 
providing individualized treatment. In tandem with pre-
viously mentioned studies that utilized the UK Biobank 
cohort, this study also exhibits limitations, including a 
restricted subgroup analysis due to a small number of 
patients with kidney failure and the absence of longitudi-
nal fundus photography data, which may impact the gen-
eralizability and depth of findings [23].

Last, a study by Joo et al. [22] developed a non-invasive 
CKD risk stratification tool called “Reti-CKD” derived 
from retina-based DL and clinical factors [22]. The per-
formance of the Reti-CKD was compared against tradi-
tional estimated glomerular filtration rate (eGFR) based 
methods that assess the kidneys’ ability to filter toxins or 
waste from our blood [22]. When compared to the cur-
rent standard of care (eGFR-CKD score), the Reti-CKD 
score exhibited significantly greater predictive per-
formance based on C-statistic and net reclassification 
index (NRI) values [22]. Overall, the study showcases 
the potential of an AI-based biomarker, the Reti-CKD 
score, in a non-invasive way for predicting the risk of 
CKD development by leveraging DL algorithms trained 
on retinal photographs and incorporating clinical fac-
tors [22]. The Reti-CKD score outperformed traditional 
eGFR-based methods [22]. Lastly, external validation of 
this study was limited due to the Korean Diabetic Cohort, 
warranting the need of further validation in diverse dis-
ease populations and ethnicities [22].

Overall limitations of AI in retinal biomarkers
While AI holds promise in retinal imaging for systemic 
disease prediction, its practical application faces limi-
tations. Robust models demand extensive and diverse 
datasets, highlighting the challenge of bias-free data col-
lection. Moreover, the potential of longitudinal prediction 
models for personalized treatment plans is hindered by 
scarce longitudinal data for training and validation. Thus, 
capturing disease progression over time is essential for 
systemic disease prediction. Additionally, unaccounted 
confounding factors, such as pulse cycle-induced retinal 
calibre variations, medical history (such as hypertension 
and diabetes), medications, and distinct individual retinal 
pathologies, can impact outcomes [12]. Notably, some 
studies exhibit imbalanced distributions of clinical condi-
tions and demographics among participants, potentially 
distorting relationships between retinal biomarkers (e.g., 
retinal vessels calibre) and neurodegenerative conditions, 
leading to misleading conclusions [12].

There are ethical concerns surrounding the use of AI in 
healthcare. An example would be the technical limitation 
of AI utilization, stemming from the fact that AI-based 
systems frequently suffer from a lack of transparency 
[63]. While it was once common to label DL as black 
boxes due to their limited explainability [63, 64], the field 
of explainable artificial intelligence (XAI) has made sig-
nificant progress in recent years [65]. Today, there are 
numerous XAI methods that have been developed to 
address the issue of model transparency and interpret-
ability [65]. These methods provide insights into how 
AI models arrive at a specific prediction, enhancing our 
ability to understand their output [65]. One example in 
the context of cardiac imaging studies is the application 
of post hoc interpretability methods such as “gradient-
weighted class activation mapping (Grad-CAM)” which 
has been proven invaluable [65]. Grad-CAM generates 
heatmaps that visually reveal which specific areas within 
a medical image have influenced the AI model’s diag-
nostic decision. By highlighting the regions that played a 
pivotal role in the model’s output, these heatmaps offer 
clinicians and researchers a clear and interpretable rep-
resentation of how AI algorithms arrive at their conclu-
sions [65].

In the context of AI investigations within the field of 
ophthalmology, there are various limitations that affect 
the development and application of AI algorithms for 
retinal biomarkers. The issue relates in how potential 
biases, geographical skew, and stakeholder diversity 
significantly impact the development of guidelines and 
recommendations [66]. One example of this represen-
tation is the Developmental and Exploratory Clinical 
Investigations of Decision support systems driven by 
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Artificial Intelligence (DECIDE-AI) survey which was 
heavily skewed towards European and UK scientists 
(83% of scientific experts) [66]. This poses a significant 
hurdle for generalizability of AI algorithms when used 
in different environments [66]. This is because the AI 
systems developed were highly dependent on their 
operational environment and their performance can be 
affected in different settings [67]. This bias in repre-
sentation can lead to challenges in ensuring the broad 
applicability of AI algorithms in different ophthalmo-
logical settings [67].

Similarly, the lack of randomized controlled trials 
(RCTs) for comparison in the performance of AI mod-
els with the current standard of care can impede the 
integration of AI into clinical practice [68].

There is also difficulty in ensuring good quality and 
consistency of retinal images across different datasets 
[17]. This limitation underscores the need for robust 
quality control measures to enhance the reliability 
and reproducibility of AI predictions based on retinal 
imaging [17].

Lastly, in our comprehensive review, which focused 
on the application of AI-based retinal biomarkers in 
predicting systemic disease, we acknowledge a limita-
tion pertaining to the exclusion of studies related to 
OCT imaging. While we recognize the significance 
of OCT as a valuable imaging modality for assessing 
retinal health and its potential contributions to under-
standing systemic disease prediction, we deliberately 
chose not to include it as a search criterion in our 
review for several reasons. First, our research scope 
was primarily oriented towards studies that utilize 
retinal fundus photography given its wide availability 
and non-invasive nature [69]. Second, colour fundus 
photography (CFP) offers practicality and accessibility 
in ophthalmology and primary care settings, making it 
the preferred tool for screening, especially in resource-
limited environments. Third, its simplicity, cost-effec-
tiveness, and ease of use distinguishes it from OCTA 
which requires specialized equipment and expertise, 
limiting its widespread use, particularly in family or 
internal medicine clinics [70]. Fourth, CFP remains a 
valuable tool for ophthalmic diagnosis because it pro-
vides information beyond microvascular circulation. 
CFP allows for the assessment of colour, reflexes, and 
signs such as the copper wiring sign in hypertensive 
retinopathy [71], which are essential for a comprehen-
sive evaluation and diagnosis. These clinical features 
cannot be fully replicated by OCTA [71].

In the future, we could explore the synergies between 
OCT and retinal fundus photography in AI-driven sys-
temic disease prediction.

Disscusion
The clinical relevance of retinal imaging for systemic dis-
eases is multifaceted. It enables early detection, allow-
ing for timely diagnosis and intervention, all without the 
need for invasive procedures or extensive testing. More-
over, it significantly reduces the diagnostic burden on 
patients who would otherwise have to visit various spe-
cialists for a comprehensive evaluation.

A recent study conducted by the research teams from 
Moorfields Eye Hospital and UCL Institute of Ophthal-
mology illustrates the transformative potential of retinal 
biomarkers [72]. They identified indicators of PD an aver-
age of seven years before clinical diagnosis, represent-
ing a paradigm shift in healthcare [72]. It streamlines the 
diagnostic process by providing not only ophthalmolo-
gists but also physicians from various specialties such as 
neurologists with a non-invasive tool to aid in the early 
identification of systemic diseases (e.g., PD) [72]. This not 
only enhances patient care by enabling early intervention 
but also reduces the burden of multiple, often invasive, 
diagnostic procedures [72].

Looking ahead, the enhancement of DL model recog-
nition capabilities in various image segmentation tasks 
presents a promising avenue for future research. Domain 
adaptation and transfer learning have shown their signifi-
cance in previous studies as demonstrated by the work of 
Tian et al. [73]. However, the inevitability of device-based 
domain variations in clinical settings necessitates the 
development of robust domain adaptation techniques [73]. 
These techniques will enable DL models to perform effec-
tively when presented with data from previously unseen 
databases, and thus enhance the practical utility of DL 
models in the field of medical image segmentation [73].

The application of transfer learning techniques can 
hold significant potential within the realm of retinal 
fundus photography. This approach involves harnessing 
knowledge from one task and applying it to a distinct yet 
related task, primarily by reusing a pre-trained model 
[74]. This methodology proves especially advantageous 
when confronted with tasks featuring limited data avail-
ability [74]. To illustrate this concept further, we can 
draw inspiration from a 2018 study by Kermany et  al. 
[74]. Their application of transfer learning involved the 
utilization of a fraction of the data typically required by 
conventional DL methods for training [74]. They directed 
this approach towards an OCT dataset, addressing the 
challenge of choroidal neovascularization (CNV) and 
three additional classifications [74]. Remarkably, their 
model exhibited exceptional performance, achieving an 
accuracy rate of 96.6%, a sensitivity score of 97.8%, and 
specificity of 97.4%. These results rivalled the diagnostic 
proficiency of senior ophthalmologists [74].
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By advancing the capabilities of DL models in the con-
text of retinal imaging, we open the doors to transforma-
tive changes in the early detection and monitoring of 
systemic diseases, ultimately improving patient outcomes 
and reducing the burden of healthcare procedures.

While the utilization of retinal imaging is not currently 
a standard practice in frontline care, there are promising 
developments that warrant consideration. One key factor 
to highlight is the accessibility and affordability of retinal 
imaging technology. Several fully automated retinal imaging 
systems are already available in the market [75], and as tech-
nology advances, their cost-effectiveness is likely to improve 
[75]. These developments make it increasingly feasible for 
retinal vessel examination to become a routine adjunct for 
primary care doctors. For example, in primary care settings, 
where patients often receive initial assessments for various 
health concerns, retinal imaging could serve as a valuable 
addition to the diagnostic toolbox [75]. Imagine a scenario 
where a patient visits their family physician for a routine 
check-up. During this visit, alongside other standard evalu-
ations, a retinal imaging scan is conducted as part of the 
assessment. Retinal fundus photography can provide valu-
able information about the patient’s overall health, including 
potential indicators of systemic diseases.

Lastly, generalizability is a cornerstone in the develop-
ment of AI algorithms applied to medical image analy-
sis, necessitating the inclusion of diverse subjects during 
development and validation through an external dataset. 
In our review of 14 studies, we identified two studies – 
Cheung et al. [15] and Rim et al. [16] – that meticulously 
adhered to these principles. They effectively employed 
well-designed DL techniques, including recent advance-
ments like the EfficientNet architecture, and appropri-
ate preprocessing methods, highlighting the potential for 
robust and reliable research outcomes in ophthalmology.

Conclusions
In this comprehensive review, we explored the vast landscape 
of AI applications in the assessment of systemic diseases, 
with a particular emphasis on the transformative potential of 
retinal imaging as a predictive tool for detecting and moni-
toring neurodegenerative disease, CVD and CKD. The retina 
offers a unique opportunity for non-invasive visualization of 
the CNS and microvascular circulation, making it a valuable 
source of information for assessing overall health. Various 
studies have demonstrated the correlation between retinal 
changes and diseases such as neurodegenerative disorders, 
CVD, and CKD. AI-based retinal biomarkers have emerged 
as a powerful approach for early disease detection, risk 
stratification, and personalized care. Longitudinal prediction 
models, which utilize baseline retinal images to forecast the 
probability of developing specific diseases in the future, offer 
significant advantages in monitoring disease progression.
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