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Complement C3 deficiency alleviates 
alkylation-induced retinal degeneration in mice
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Abstract 

Background: It has been found that the extensive use of anticancer drugs containing DNA‑alkylating agents not 
only target cancer cells but also cause retinal inflammation through toxic intermediates. Complement C3 (C3) is a 
core component of the complement activation pathway, and dysregulation of the complement pathway is involved 
in several retinal degenerative diseases. However, whether C3 plays a critical role in alkylation‑induced retinal degen‑
eration is unclear.

Methods: Following treatment with the alkylating agent methyl methane sulfonate (MMS), the C3 mRNA and pro‑
tein level was measured, DNA damage and photoreceptor cell death were assessed in both wild‑type (WT) C57BL/6J 
and C3 knockout (KO) mice.

Results: We determined that complement pathway is activated following MMS treatment, and C3 knockout (KO) 
increased the rate of photoreceptor cell survival and preserved visual function. The mRNA levels of nuclear erythroid‑
related factor 2 (Nrf2) and related genes were higher after MMS application in C3 KO mice.

Conclusion: In summary, our study found that C3 KO promotes photoreceptor cell survival and activates the Nrf2 
signaling pathway in the context of alkylation‑induced retinal degeneration.
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Background
Retinal degenerative diseases threaten people’s vision 
through the gradual degeneration of photoreceptor cells 
and supporting cells [1]. Age-related macular degen-
eration (AMD) and retinitis pigmentosa (RP) are two 
major diseases involving the degeneration of photore-
ceptor cells. Currently, retinal degeneration is incurable 
and affects the lives of millions of individuals around the 
world [2]. Aging, genetic mutations and smoking have 
been identified as risk factors for retinal degeneration 
[3]. Alkylating agents, which are used as frontline chemo-
therapeutic drugs for cancer treatment, lead to extensive 

DNA damage in the body, which might cause retinal 
degeneration [4]. However, the pathological mechanisms 
of retinal degeneration remain unclear [5]. Therefore, it 
is important to elucidate the pathological mechanism 
underlying retinal degenerative diseases to aid the devel-
opment of novel therapies.

It is well documented that oxidative stress induced by 
the environment and frontline chemotherapeutic drugs 
lead to DNA damage and apoptosis of photoreceptor 
cells [6]. Antioxidants have been found to partially alle-
viate the progression of retinal degeneration in rd1 mice 
(an RP model) [6]. A previous study also reported that 
retinal photoreceptor cells express P2X purinoceptor 
7 (P2X7R) and that the P2X7 antagonist brilliant blue 
G (BBG), an approved adjuvant used in ocular surgery, 
prevents photoreceptor cell damage [7]. It has also been 
proven that DNA damage repair is tightly linked to reti-
nal degeneration [8]. DNA damage can trigger the base 
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excision repair (BER) pathway for alkylated DNA bases, 
and DNA damage is often repaired through BER; how-
ever, in some cells, BER intermediates can cause retinal 
cell damage [8]. It has been demonstrated that treatment 
with the alkylating agent methyl nitrosourea (MNU) 
leads to visual function impairment in rodent models [9]. 
In addition, Samson et al. reported that the application of 
methyl methane sulfonate (MMS) results in photorecep-
tor cell death in an animal model by activating the alky-
ladenine DNA glycosylase (AAG)-dependent signaling 
pathway [10]. Some anticancer agents, such as bleomycin 
and temozolomide, are used to kill cancer cells but often 
induce DNA damage, leading to retinal degeneration [8, 
11]. Recently, it was proven that inflammation is involved 
in alkylation-induced retinal degeneration [8]. However, 
the exact downstream mechanism of alkylation-induced 
retinal degeneration needs further investigation.

The complement system plays an important role in 
retinal development and homeostasis [12]. C3 is a core 
component of the complement activation pathway [13, 
14], and C3 activation is essential for the initiation of 
retinal impairment [15, 16]. C3 plays a key role in reti-
nal degeneration, including AMD [17]. Upregulated 
expression and deposition of C3 have been observed 
in the degenerated retinas of both humans and animals 
[18–21]. Recent studies have found that inhibiting the 
complement activation pathway is a potential therapeutic 
strategy for AMD [22, 23]. However, whether C3 activa-
tion is involved in DNA-alkylating agent-induced retinal 
degeneration is unclear. Here, we found that activation of 
C3 caused extensive DNA damage and that MMS treat-
ment led to photoreceptor cell apoptosis. Furthermore, 
knockout (KO) of C3 led to neuroprotection by increas-
ing nuclear erythroid-related factor 2 (Nrf2) activity.

Methods
Animals
Eight-week-old C57BL/6J and C3 KO mice were used 
for this study. It was found that alkylation-induced reti-
nal degeneration is sex dependent and that male animals 
are more sensitive to MMS [8, 24], so we chose to work 

with male mice for our study. C3 KO mice were kindly 
gifted by Professor Yusen Zhou (State Key Laboratory 
of Pathogen and Biosecurity, Beijing Institute of Micro-
biology and Epidemiology, Beijing 100071, China). All 
mice were housed in a temperature-controlled environ-
ment (21 °C ± 1 °C) on a normal 12-h light/dark cycle and 
provided ad libitum access to food and water. All animal 
protocols were conducted according to the ARVO State-
ment for the Use of Animals in Ophthalmic and Vision 
Research. The animal protocol was approved by the Insti-
tutional Animal Care and Use Committee of the Gen-
eral Hospital of Chinese People’s Liberation Army and 
the Academy of Military Medical Sciences (ID number: 
307-ky-090).

Treatment with MMS and tissue collection
MMS (Sigma, USA) was used to induce retinal degenera-
tion. Male C57 and C3 KO mice were treated with a sin-
gle i.p. injection of MMS at a sublethal dose of 75 mg/kg 
in saline [10]. After electroretinography (ERG), eyeballs 
were collected and fixed using 4% paraformaldehyde.

Histology and immunofluorescence staining
After fixation for 24  h, the anterior segment of the eye 
was removed under a stereomicroscope, dehydrated by 
immersion in different concentrations of ethanol (70% 
ethanol for 20  min, 80% ethanol for 20  min, 90% etha-
nol for 20 min, 95% ethanol for 20 min, 100% ethanol for 
20 min, and 100% ethanol for 20 min), cleared in xylene 
for 20 min twice and embedded in wax. Sections (5 μm) 
were prepared and used for hematoxylin and eosin (H&E) 
staining and immunofluorescent staining. The outer 
nuclear layer (ONL) thickness was evaluated throughout 
the whole retina [25]. After dewaxing, sections were sub-
jected to antigen retrieval as previously described [26]. 
Primary antibodies were purchased from Abcam (anti-
rhodopsin, ab221664, 1:600; anti-C3, ab225539, 1:600; 
mouse monoclonal anti-DNA/RNA Damage [15A3], 
ab62623, 1:600). All sections were stained under the same 
conditions. Negative control slides (no primary antibody) 
were used to set the confocal laser power and collection 

Table 1 Primers list for real‑time qPCR assay

Gene Forward Reverse

mC3 GAA GTA CCT CAT GTG GGG CC CAG TTG GGA CAA CCA TAA ACC 

mNrf2 GCC TTA CTC TCC CAG TGA ATAC CCC AAA TGG TGC CTA AGA 

mSod2 CAG GAT GCC GCT CCG TTA T TGA GGT TTA CAC GAC CGC TG

mNqo1 TGA AGA AGA AAG GAT GGG AGG AGG GGG AAC TGG AAT ATC AC

mHmox‑1 AGG TAC ACA TCC AAG CCG AGA CAT CAC CAG CTT AAA GCC TTCT 

mRhodopsin CCC TTC TCC AAC GTC ACA GG GTA GAG CGT GAG GAA GTT GATG 

mβ‑Actin1 CGA GAA GAT GAC CCA GAT CAT GTT CCT CGT AGA TGG GCA CAG TGT 
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parameters. The same confocal parameters were used for 
all slides, and images of the retina at the same site were 
captured with a laser confocal microscope for all mice 
in each experiment. The fluorescence intensity in each 
image was measured with ImageJ [27]. Statistical analyses 
were performed using SPSS.

ERG
Animals underwent ERG before and 1, 3, and 7 days after 
MMS injection as previously described [28]. Briefly, mice 
were dark-adapted for 12 h. Under dim red light condi-
tions, the pupils were dilated with 0.5% tropicamide 
and 0.5% phenylephrine eye drop solution (Santen 
Pharmaceutical Co., Ltd., Osaka, Japan). The mice were 
anesthetized with isoflurane and kept warm to prevent 
hypothermia. A flashlight intensity of 0.5  log (cd  s/m2) 
was used for all experiments. The ERG response was 
recorded with a corneal active gold electrode. The ampli-
tudes of both the a and b waves were assayed.

TUNEL staining
TdT-UTP nick end labeling (TUNEL) staining was per-
formed according to the manufacturer’s instructions 

(Beyond, Shanghai). The slices were incubated with pro-
tease K (2 μg/mL) for 15 min at room temperature and 
washed three times with phosphate buffered saline (PBS) 
for 5  min each. Then, TUNEL solution was added for 
30  min at 37  °C. After washing three times with PBS, 
DAPI was applied to counterstain the nuclei. Images 
were captured with a laser confocal microscope. ImageJ 
was used to process the images and semi-quantify the 
fluorescence intensity.

Real‑time qPCR (RT‑qPCR)
The eyeballs were washed with clean cold PBS and then 
dissected on ice. The neural retina, retinal pigment epi-
thelium (RPE) and choroidal tissue were quickly col-
lected. mRNA was extracted with TRIzol (Thermo 
Fisher, USA), and cDNA was synthesized using iScript 
cDNA Synthesis kits (Bio-Rad, USA). RT-qPCR was 
performed as previously described [29]. Real-time PCR 
was performed using SYBR Green master mix (Bio-Rad, 
USA) on a CFX96 Bio-Rad system (Bio-Rad, USA) fol-
lowing the manufacturer’s instructions. The following 
PCR cycle parameters were used: 95  °C for 10  s and 40 
cycles of 95  °C for 5 s and 60  °C for 34 s. Each reaction 

Fig. 1 The complement system is activated in MMS‑treated mouse retinas. a C3 expression in the retinas of MMS‑treated mice was assessed by 
immunofluorescence staining before and 1, 3, and 7 days after MMS injection. b Semi‑quantification of C3 immunoreactivity using ImageJ before 
and 1, 3, and 7 days after MMS injection. c C3 mRNA levels in MMS‑treated mouse retinal tissue were evaluated by real‑time qPCR and are expressed 
as the fold change compared with that in the control group after normalization to β‑actin level (n = 6, ***P < 0.001 compared with control). 
MMS, methyl methane sulfonate; GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer 
nuclear layer; OS, outer segment
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was performed in triplicates, and mβ-Actin1 was used as 
a reference gene. The primers used in this study are listed 
in Table 1.

Statistical analysis
Statistical analysis was performed using SPSS 19.0 
(Armonk, NY, USA). Two-tailed unpaired Student’s t 
test were used for statistical analysis. All quantitative 
values are presented as the mean ± standard error of the 
mean (SEM). Differences were considered significant at 
P < 0.05.

Results
The complement pathway is activated in the MMS‑induced 
retinal degeneration model
Previous studies have shown a strong connection 
between C3 and retinal degeneration [17]. However, the 

function of C3 in DNA-alkylating agent-induced retinal 
disease is unclear. MMS was administered to induce reti-
nal injury [10]. Meira et al. observed profound loss of the 
photoreceptor layer after exposure to a medium dose of 
MMS (75 mg/kg) for 1 week. Therefore, we used 75 mg/
kg MMS here. C3 protein was detected in retinal neural 
layers and the choroid layer (Fig.  1a). Semi-quantifica-
tion of C3 expression revealed sharp upregulation of C3 
expression 1  day after MMS injection. The expression 
level gradually decreased during degeneration but was 
still significantly higher in the MMS group than in the 
control group (Fig.  1a, b; P < 0.001, n = 6). We observed 
that the mRNA level of C3 was significantly higher in the 
MMS group than in the control group at 1, 3, and 7 days 
(Fig. 1c; P < 0.001, n = 6). These data indicated that upreg-
ulated expression of C3 may be correlated with the devel-
opment of MMS-induced retinal degeneration.

n

Fig. 2 C3 knockout (KO) protects retinal function following MMS treatment. a Electroretinography (ERG) waves in wild‑type (WT) and C3 KO mice 
before and 1, 3, and 7 days after MMS injection. b, c Dot plot of the amplitudes of a and b waves before and 1, 3, and 7 days after methyl methane 
sulfonate (MMS) injection (n = 6, ***P < 0.001 compared to the control)
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C3 deficiency preserves retinal function
Since we found an increase in the production of C3 in 
the MMS-treated mouse retina, we aimed to elucidate 
the function of C3 using the MMS-induced retinal 
degeneration model. We administered MMS (75 mg/kg) 
to wild-type (WT) and C3 KO mice and observed them 
for 1 week. MMS treatment led to an extinguished elec-
troretinogram, with a sharp decline in the a- and b-wave 
amplitudes, in WT mice (Fig.  2a; P < 0.001, n = 6). On 
the other hand, we observed that retinal function was 
partially preserved in C3 KO mice, with a and b wave 
amplitudes being higher than those in littermate WT 
animals (Fig.  2b, c; P < 0.001, n = 6). This result sug-
gested that genetic deletion of C3 had a remarkable 
effect on mitigating the damaging effect of MMS on 
retinal function.

C3 deficiency protects against photoreceptor cell injury
Consistent with the data presented above, H&E stain-
ing of the retina showed disorganization of the pho-
toreceptor layer from 1  day after MMS injection. 

Degeneration of photoreceptor cells was observed, and 
the thickness of the ONL was decreased in WT mice 
(Fig. 3a); however, photoreceptor cell degeneration was 
partially rescued in the C3 KO group from 1 to 7 days 
after MMS injection (Fig.  3a, b). These results sug-
gested that activation of C3 in WT mice induced pho-
toreceptor cell injury (P < 0.001, n = 6). Additionally, 
RT-qPCR and immunofluorescence staining showed 
that rhodopsin mRNA and protein levels were dramati-
cally decreased in WT mice, while the degree to which 
rhodopsin mRNA and protein levels were decreased 
was significantly alleviated in C3 KO mice (Fig.  4a–c; 
P < 0.001, n = 6). In summary, these data indicate that 
loss of C3 dramatically reduces MMS-induced photo-
receptor cell loss.

C3 deficiency rescues photoreceptor cell apoptosis
TUNEL staining was used to determine whether loss 
of C3 could rescue photoreceptor cell death. There 
were no TUNEL-positive cells before MMS treatment 

Fig. 3 MMS retinal degeneration was alleviated in C3 knockout (KO) mice. a H&E staining of retinas from wild‑type (WT) and C3 KO mice before 
and 1, 3, and 7 days after MMS injection. b Quantification of the ONL thickness in WT and C3 KO mice before and 1, 3, and 7 days after MMS 
injection (n = 6, ***P < 0.001 compared with control). MMS, methyl methane sulfonate; GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner 
nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear layer; RPE, retinal pigment epithelium



Page 6 of 10Du and Peng  Eye and Vision            (2022) 9:22 

in either WT or C3 KO mice (Fig. 5a). As shown in the 
curve of the semi-quantification data, TUNEL-posi-
tive cells appeared in the ONL 1 day after MMS injec-
tion and the number of these cells reached a peak at 
3 days and then gradually decreased in the WT group 
(Fig. 5b). The ratio of TUNEL-positive cells decreased 
in 3-day-old MMS-treated C3 KO mice compared 
with 3-day-old MMS-treated WT mice (Fig.  5a, b; 
P < 0.001, n = 6). Taken together, these showed that 
loss of C3 could effectively rescue photoreceptor cell 
apoptosis.

C3 deficiency reduces retinal DNA damage
To quantify and better characterize the mechanism 
of alkylation-induced retinal cell injury, the level of 

DNA damage was analyzed by immunofluorescence 
staining using an anti-DNA damage antibody. We 
detected extensive DNA damage in the positive group 
of  NaIO3-induced oxidative stress retinal injury model 
(Additional file 1: Fig. S1). Extensive DNA damage was 
observed soon after MMS treatment in the WT group 
on 1 day, while the damage was limited to the ONL in 
C3 KO mice (Fig. 6a). Similar results were observed in 
3- and 7-day samples (Fig.  6a). Moreover, the curve of 
the semi-quantified data showed that the ratio of DNA 
damage-positive cells decreased in the C3 KO group 
compared with the WT group (Fig. 6b; P < 0.001, n = 6). 
This result indicated that C3 deficiency reduced DNA 
damage not only in photoreceptor cells but also in 
whole retinal cells.

Fig. 4 C3 knockout (KO) protects against a reduction in photoreceptor cell number. a Representative images for immunofluorescence staining 
of rhodopsin in retinal samples before and 1, 3, and 7 days after MMS injection. b Semi‑quantification of the rhodopsin staining intensity in each 
group using ImageJ. C3−/− KO showed significantly more rhodopsin‑positive cells than wild‑type (WT) mice. c The rhodopsin mRNA level in 
MMS‑treated mouse retinal tissue was evaluated by real‑time qPCR and is expressed as the fold change after normalization to mβ‑actin level (n = 6, 
***P < 0.001 compared with control). MMS, methyl methane sulfonate; GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; 
ONL, outer nuclear layer
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C3 deficiency exhibits a Nrf2‑mediated protective effect
Furthermore, we determined whether C3 deficiency alle-
viates oxidative stress levels by measuring the mRNA lev-
els of Nrf2, Nqo1, Hmox-1 and Sod2 before and 1, 3, and 
7 days after MMS treatment. The mRNA levels of Hmox-1 
and Nqo1 were upregulated in C3 KO mice compared with 
WT control mice. Nrf2, Nqo1, Hmox-1 and Sod2 mRNA 
levels were decreased in WT mice 1 day after MMS treat-
ment (Fig.  7; P < 0.001, n = 6). The mRNA levels of these 
oxidative stress genes were upregulated in C3 KO mice 
compared to WT mice 1, 3, and 7 days after MMS treat-
ment (Fig. 7; P < 0.001, n = 6). Taken together, these dem-
onstrate that antioxidation was increased in C3 KO mice 
following MMS treatment and that C3 deficiency exerted 
neuroprotection via the Nrf2 signaling pathway.

Discussion
C3 is a core immune system component that is essen-
tial for maintaining neural system homeostasis [30]. 
The function of C3 in alkylating agent-induced retinal 
degeneration in mice was studied in our experiments. 
C3 deficiency partially rescued photoreceptor cell 
apoptosis and preserved visual function by promot-
ing the antioxidative signaling pathway and effectively 
attenuated a DNA alkylating agent-induced retinal 
degeneration.

Previous studies have found that AAG, a DNA repair 
protein, activates the BER pathway, which plays an 
important role in alkylation-induced retinal degeneration 
in animals [10]. AAG is an enzyme that can cleave the 
glycosyl bond connecting the base to the sugar phosphate 

Fig. 5 TUNEL staining of MMS‑treated mouse retinas. a TUNEL staining before and 1, 3, and 7 days after MMS injection. b Semi‑quantification of 
TUNEL staining in each group using ImageJ. There were fewer TUNEL‑positive cells in the central retina in the C3 knockout (KO) mouse group than 
in the wild‑type (WT) mouse group (n = 6, ***P < 0.001 compared with control). MMS, methyl methane sulfonate; GCL, ganglion cell layer; IPL, inner 
plexiform layer; INL, inner nuclear layer; ONL, outer nuclear layer
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backbone and then remove alkylated bases. This process 
generates a basic site that can be further processed by the 
BER machinery. Further research has revealed that the 
AAG-initiated base excision response is PARP1 depend-
ent [24]. However, it is unclear whether inflammation 
is involved in alkylation-induced retinal degeneration. 
Allocca et al., however, demonstrated that inflammation 
played a crucial role in alkylation-induced retinal degen-
eration [8].

Further, we demonstrated that C3 activation contrib-
utes to photoreceptor cell apoptosis during alkylating 
agent-induced oxidative stress. This result is consist-
ent with a previous report showing that inactivation 
of C3 alleviates retinal injury [31, 32]. In our experi-
ments, we observed extensive DNA damage in retinal 

cells in wild-type animals, but only photoreceptor cells 
went through apoptosis. It seems that photorecep-
tor cells are more sensitive than other retinal cells to 
MMS. MMS treatment caused extensive DNA damage 
in retinal cells in wild-type mice. However, the damage 
to photoreceptor cells was limited in C3 KO mice. This 
was likely due to the protective effect of C3 deficiency. 
Moreover, we observed that C3 deficiency resulted 
in neuroprotection via Nrf2 activation. Activation of 
Nrf2 and downstream antioxidant-responsive elements 
(AREs) can protect neurons from damage and alleviate 
CNS disorders [33].

Nrf2 is an endogenous oxidative stress sensor. Under 
oxidative stimulation, Nrf2 can dissociate from Kelch-
like ECH-associated protein 1 (Keap1) and activate 

Fig. 6 DNA damage in MMS‑treated mouse retinas. a Representative images of DNA damage staining in retinal cross sections from each group 
before and 1, 3, and 7 days after MMS injection. b Semi‑quantification of DNA damage staining in each group using ImageJ. The C3−/− mouse 
group significantly showed fewer DNA damage‑positive cells in the retina than the wild‑type (WT) mouse group (n = 6, ***P < 0.001 compared with 
control). MMS, methyl methane sulfonate; GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; ONL, outer nuclear layer
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the transcription of Sod2, Ho-1 and Nqo-1. Keap1 
and Nrf2 play a central role in monitoring endogenous 
antioxidant enzyme activity. Here, MMS treatment 
significantly downregulated the expression of Nrf2, 
antioxidant enzymes, HO-1 and Nqo1. C3 deficiency 
partially reversed the downregulation of the expres-
sion of these genes. These results indicated that C3 
could regulate the Nrf2-ARE pathway during retinal 
degeneration. However, C3 KO could not totally pre-
vent retinal degeneration. Other inflammatory reac-
tions might also be involved in alkylation-induced 
retinal degeneration. Additional work is therefore 
needed to elucidate the detailed mechanism underly-
ing the effect of C3 on the Nrf2 signaling pathway.

Conclusions
In summary, our study found that alkylating agent MMS 
treatment induced photoreceptor cell degeneration and 
activation of complement pathway. Moreover, C3 KO pro-
motes photoreceptor cell survival and activates the Nrf2 
signaling pathway in the context of alkylation-induced 

retinal degeneration. Our data suggests that inhibition of 
complement pathway might be helpful for treatment of 
alkylating agent induced retinal degeneration.
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NaIO3 injection. b. Semi‑quantification of DNA damage using ImageJ. 
There are DNA damage‑positive cells in the retina after  NaIO3 injection 
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