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Abstract

Purpose: To develop an automated classification system using a machine learning classifier to distinguish clinically
unaffected eyes in patients with keratoconus from a normal control population based on a combination of
Scheimpflug camera images and ultra-high-resolution optical coherence tomography (UHR-OCT) imaging data.

Methods: A total of 121 eyes from 121 participants were classified by 2 cornea experts into 3 groups: normal (50
eyes), with keratoconus (38 eyes) or with subclinical keratoconus (33 eyes). All eyes were imaged with a
Scheimpflug camera and UHR-OCT. Corneal morphological features were extracted from the imaging data. A neural
network was used to train a model based on these features to distinguish the eyes with subclinical keratoconus
from normal eyes. Fisher’s score was used to rank the differentiable power of each feature. The receiver operating
characteristic (ROC) curves were calculated to obtain the area under the ROC curves (AUCs).

Results: The developed classification model used to combine all features from the Scheimpflug camera and UHR-OCT
dramatically improved the differentiable power to discriminate between normal eyes and eyes with subclinical
keratoconus (AUC = 0.93). The variation in the thickness profile within each individual in the corneal epithelium extracted
from UHR-OCT imaging ranked the highest in differentiating eyes with subclinical keratoconus from normal eyes.

Conclusion: The automated classification system using machine learning based on the combination of Scheimpflug
camera data and UHR-OCT imaging data showed excellent performance in discriminating eyes with subclinical
keratoconus from normal eyes. The epithelial features extracted from the OCT images were the most valuable in the
discrimination process. This classification system has the potential to improve the differentiable power of subclinical
keratoconus and the efficiency of keratoconus screening.
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Background
The accurate identification of keratoconus (KC) at its
earliest stage is the primary concern in corneal refractive
surgery preoperative screening for several reasons.
Corneas with undetected KC are known to be highly
associated with iatrogenic keratectasia, which is the most
severe and irreversible complication after laser in situ
keratomileusis (LASIK) [1, 2]. In addition, with the avail-
ability of therapies such as corneal cross-linking, early
detection can also contribute to delaying or stopping the
progression of KC [3]. However, KC identification can
be challenging clinically in its early stages because visual
acuity remains good and there is no specific corneal
finding.
Keratoconus can be well defined and easily detected

through slit-lamp biomicroscopy and corneal Placido
reflection-based topography [4]. However, the definition
of subclinical KC itself is ambiguous [5]. The informa-
tion acquired from traditional imaging methods is
limited, and using these methods, the diagnostic capacity
is insufficient in identifying subclinical KC. Recently,
new ophthalmic imaging modalities have been applied in
the screening of KC at its earliest stage [6, 7]. Among
these modalities, Scheimpflug-based camera imaging
and spectral domain optical coherence tomography
(SD-OCT) have been the most widely studied methods.
Both approaches have provided unique imaging advan-
tages in recognizing early changes in the cornea (e.g.,
depth information, corneal microstructures, etc.) and
have been proven to provide diagnostic value in detect-
ing subclinical KC [5]. Hwang et al. reported a direct
statistical approach using a mixed topography variable
from a Scheimpflug-based camera and SD-OCT that
reached high discrimination [8]. However, in clinical
settings, combined machine-derived parameters from
these instruments are often too complicated for clini-
cians to interpret.
This dilemma can possibly be addressed by the advent

of artificial intelligence (i.e., machine learning). The use of
artificial intelligence in corneal topography has a history
of over a decade [9]. However, the early applications of
machine learning in corneal topography were restricted to
a single machine or several metrics derived from the same
image; hence, the diagnostic ability of these models to de-
tect subclinical KC relied on a large sample size [10–12].
In light of the good performance of combined tomography
instruments in previous studies, an automated screening
approach using machine learning may dramatically help
clinicians classify subclinical KC.
In this study, we present an automated classification

system using the combination of Scheimpflug camera
and UHR-OCT imaging parameters based on a machine
learning classifier to distinguish a population with sub-
clinical keratoconus from a normal control population.

We report that the machine learning-derived classifier
can provide valuable identification of subclinical KC.
Moreover, multiple machines that combine features
demonstrate better performance than a single machine
that derives features.

Method
The study was approved by the Ethics Committee of the
Eye Hospital of Wenzhou Medical University (ID: Y-
2015003) and adhered to the tenets of the Declaration of
Helsinki. Written informed consent was obtained from
each subject.

Study population
A total of 121 eyes of 121 subjects were examined be-
tween September 2015 and July 2018. The demographic
characteristics of all enrolled subjects are shown in
Table 1. All subjects were imaged with the Pentacam
HR system (Oculus, Gmbh, Wetzlar, Germany) and a
UHR-OCT prototype system. Patients with KC (Group
1) and subclinical KC (Group 2) were recruited from the
Affiliated Eye Hospital of Wenzhou Medical University.
Normal subjects (Group 3) were recruited from the
hospital’s working staff and students. A comprehensive
ocular exam was performed by experienced doctors (YY
and JJ) and included a review of family and medical
history, corrected-distance visual acuity, slit-lamp bio-
microscope examination, fundus examination and cor-
neal topography (Medmont, Inc., Nunawading Melbourne,
Australia). The subjects were assigned to one of three
groups.
Group 1. One eye of each patient with KC was in-

cluded in this study. The KC patients were diagnosed by
the following clinical findings: (1) the presence of at least
one of the following slit-lamp signs: Vogt’s striae,
stromal thinning, Fleischer’s ring > 2 mm arc; (2) a cen-
tral average keratometry above 47.0 D; (3) asymmetric
topographical features with inferior-superior (I-S) values

Table 1 Demographic characteristics of normal, subclinical
keratoconus, and keratoconus groups

Normal (n = 50) Sub KC (n = 33) KC (n = 38)

SE (D) −3.9 ± 2.3 −3.7 ± 4.0 −6.7 ± 4.5*

BCVA (decimal VA) 1.1 ± 0.1 1.0 ± 0.2* 0.5 ± 0.3*

Max-K (D) 43.0 ± 1.3 43.1 ± 1.9 46.3 ± 3.3*

Min-K (D) 44.3 ± 1.6 44.7 ± 1.3 51.2 ± 4.7*

Avg-K (D) 43.7 ± 1.4 43.9 ± 2.0 48.8 ± 3.6*

Ast-K (D) 1.3 ± 0.7 1.6 ± 0.9 5.3 ± 3.1*

Normal= normal group; Sub-KC= subclinical keratoconus group;
KC= keratoconus group; n= number of eyes; SE= spherical equivalent;
BCVA= best corrected visual acuity; Max-K= maximum keratometry; Min-
K= minimum keratometry; Avg-K= average keratometry; Ast-K= astigmatic
keratometry; VA= visual acuity; D= diopter; *P < 0.05 compared to the normal
group
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above or equal to 2.0 D of the vertical power gradient
across the 6-mm region; (4) no history of contact lens
use, ocular surgery or extensive scarring.
Group 2. Subclinical KC eyes were identified from the

other eyes of unilateral KC patients, and patients meeting
all criteria mentioned below were recruited: (1) no clinical
signs of KC during slit-lamp biomicroscope examination,
retinoscopy and ophthalmoscopy; (2) a diagnosis of KC in
the contralateral eye; (3) a central average keratometry less
than 45.0 D; (4) corneal topographical features with I-S
values less than 1.4 D of the vertical power gradient across
the 6-mm region; (5) myopia less than – 6.0 D with astig-
matism less than − 2.0 D; (6) no history of contact lens
wear or ocular surgery.
Group 3. Normal eyes were included if they met the fol-

lowing criteria: (1) no clinical signs or suggested suspected
subclinical KC or KC patterns from corneal topography
images; (2) a central average keratometry less than 45.0 D;
(3) I-S values less than 1.4 D of the vertical power gradient

across the 6-mm region; (4) myopia less than − 6.0 D and
astigmatism less than − 2.0 D; (5) no history of contact
lens wear, ocular surgery or trauma.

Scheimpflug-based imaging acquisition procedure
A Pentacam HR system (Oculus, Gmbh, Wetzlar,
Germany) was used to perform the corneal tomographic
examinations (Fig. 1b). All procedures were performed by
an experienced operator, and all participants were asked to
blink once before image acquisition. Only when “Examin-
ation Quality Specification” showed “OK” were the corneal
curvature, elevation and pachymetry results accepted. A
total of three repeated measurements were performed on
each subject. The built-in Pentacam HR software (version
6.02r23) was used to export the machine-based metrics, in-
cluding metrics from the elevation and curvature values
from the anterior and posterior interfaces as well as corneal

Fig. 1 Representative UHR-OCT images and Pentacam HR system report. a Representative UHR-OCT image of a normal cornea. The cornea was
automatically segmented into three layers (epithelium, Bowman’s layer and stroma). b Representative Pentacam HR system report of normal eye.
Parameters were extracted from the report. c Reconstruction of the entire corneal profile. Each region was divided into 10 equal zones to
perform data analysis, and the superior and inferior zones ended at the edges of Bowman’s layer (*)
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pachymetry mapping. The average value obtained from
three measurements on the same subject was recorded.

UHR-OCT imaging acquisition procedure
A prototype UHR-OCT system was used to acquire
corneal images, which have been described previously
(Fig. 1a and c) [7, 13, 14]. In brief, the UHR-OCT system
used a three-module superluminescent diode (SLD) light
source (Broadlighter, T840-HP, Superlumdiodes Ltd.,
Moscow, Russia) with a center wavelength of 840 nm
and a full width at half maximum bandwidth of 100 nm,
which had approximately 3 μm of axial resolution in cor-
neal tissue with a scan speed of 24 k A-lines per second.
The image width was 8.66 mm. The imaging procedure
was performed by an experienced operator working from
9 AM to 5 PM. Central images were acquired by guiding
each participant to stare at the internal visual target po-
sitioned in front of the eye for alignment. Superior and
inferior images were acquired by guiding the subject to
stare at the external fixation target positioned 15 cm
from the subjects, with 30° upward and 30° downward
angles. Custom developed software based on MATLAB
2018a (MathWorks, Inc., Natick, MA, USA) was used to
perform image analysis, in which the thickness profiles
of the epithelium, Bowman’s layer and stroma were
automatically extracted for further analysis [7].

Analyzed parameters and description
Both eyes of all participants were imaged by the Penta-
cam HR system and UHR-OCT, and only one eye of the
normal control subjects and KC patients was randomly
selected for analysis. A total of 49 parameters were
extracted. All parameters were independent variables.
Briefly, the analyzed parameters were described as follows:

Pentacam HR system curvature-based parameters:

Flat keratometry (K1): K1 represented the flat corneal
curvature in the central 3.0 mm zone.
Steep keratometry (K2): K2 represented the steep
corneal curvature in the central 3.0 mm zone.
Average keratometry (Km): Km represents the average
values of K1 and K2.
Steepest keratometry (Kmax): Kmax represents the
steepest corneal curvature in the cornea.

Pentacam HR system elevation-based parameters:
Elevation maps were generated with the 8mm best-fit
sphere (BFS) float mode. Elevation values were manually
detected in the central 5 mm area in both the front and
back corneal surfaces. Four elevation values were recorded
with the average values of 3 repeated measurements:

(1) Max elevation (Emax (front) and Emax (back)): the
maximum elevation of the front or back surface.

(2) Central elevation (Ecenter (front) and Ecenter
(back)): the elevation at the cornea apex of the front
or back surface.

Pentacam HR system pachymetry-based parameters:
Two parameters calculated over a diameter of 8.0 mm
were recorded:

(1) Thinnest point: the thickness value at thinnest
point of the cornea

(2) Corneal volume: the volume of the cornea with a
diameter of 8 mm, centered on the anterior corneal
apex.

Pentacam HR system integrated parameters:
Seven parameters were exported from Pentacam HR
built-in software.
(1) ISV: index of surface variance; (2) IHA: index of

height asymmetry; (3) IVA: index of vertical asymmetry;
(4) IHD: index of height decentration; (5) KI: keratoco-
nus index; (6): Rmin: smallest radius; (7): CKI: central
keratoconus index.

UHR-OCT system epithelium, Bowman’s layer and stroma
pachymetry-based parameters:

Average thickness (EMean, BMean, SMean): EMean,
BMean and SMean represent the average thickness of
the epithelium, Bowman’s layer and stroma, respectively,
in different locations (total, superior and inferior).
Minimum thickness (Emin, Bmin, Smin): Emin, Bmin
and Smin represent the thinnest thickness of the
inferior thickness map of the epithelium, Bowman’s
layer and stroma.
Maximum thickness (Emax, Bmax, Smax): Emax, Bmax
and Smax represent the thickest thickness of the
superior thickness map of the epithelium, Bowman’s
layer and stroma.
Ectasia index (EEI, BEI and SEI): EEI, BEI and SEI
represent localized thinning in the vertical meridian of
the epithelium, Bowman’s layer and stroma. The index
was defined as the minimum thickness in the inferior
half divided by the average thickness in the superior
half multiplied by 100.
Maximum ectasia index (EEI-MAX, BEI-MAX and
SEI-MAX): EEI-MAX, BEI-MAX and SEI-MAX
represent the maximum localized thinning in the
vertical meridian of the epithelium, Bowman’s layer and
stroma. The index was defined as the minimum
thickness in the inferior half divided by the maximum
thickness in the superior half multiplied by 100.
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Profile variation (EPV, BPV and SPV): EPV, BPV and
SPV represent the variation of thickness profile within
each individual of the epithelium, Bowman’s layer and
stroma. It was defined as the root mean square
between the zone thickness and the profile average
within one subject.
Profile deviation (EPSD, BPSD and SPSD): EPSD, BPSD
and SPSD represent the standard deviation of the
thickness profile between individual and normal
patterns of the epithelium, Bowman’s layer and stroma.
It was defined as the root mean square of the zonal
thickness of the individual profiles and zonal
thicknesses of the pattern average.

Other parameters
Gender.

Automated machine learning classifier
In our study, all machine learning classifiers were built in
an open-source Python package with Python 3.5 (Python
Software Foundation, https://www.python.org). The classi-
fier was used to discriminate normal, subclinical KC, and
KC corneas in an objective and quantitative way. The
workflow is detailed in Fig. 2. In short, 70% of the cases
were randomly selected, and 30% of the cases were divided
into training and validation sets. All data were normalized
before training. When the logistic regression and neural

network classifier reached the highest sensitivity and spe-
cificity, the resulting model was selected as the automated
machine learning classifier. The whole procedure was re-
peated for 100 times; the receiver operating characteristic
(ROC) curves were calculated each time to obtain the area
under the ROC curves (AUCs), and sensitivity and specifi-
city were calculated separately in the validation sets.

Fisher’s scoring system
We manually chose 49 parameters from the three different
datasets (normal, subclinical KC, and KC eyes). A feature
selection procedure was used to gain a better understand-
ing of all the features and reduce the overfitting of the
classifier model caused by some absolute features [15]. We
used Fisher’s score to evaluate the discriminative power of
each feature. We listed the correlation between the Fisher
score and the feature’s impact on the classification accuracy
for all features. If the corresponding feature has no discrim-
inative power among different eyes, then the Fisher score
will be close to zero, and the classification average accuracy
of the feature will be low. In contrast, selected features are
considered good if their Fisher scores are much larger than
zero. Classification with these features can achieve high
accuracy. Consequently, we selected the top 5 features
according to the Fisher score of each classifier for a detailed
presentation (Table 2).

Fig. 2 Workflow of training and validate machine learning classifier
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Statistical method
SPSS software (version 22.0; SPSS, Inc., Chicago, IL,
USA) was used for all statistical procedures. Data for
continuous features are presented as mean ± standard
deviation. Student’s t-tests were used to compare corneal
features in normal subjects, subclinical KC subjects and
KC subjects. P-values of less than 0.05 were considered
statistically significant.

Results
Logistic regression classifier and neural network classifier
discriminating power and each variable discriminating
power
Normal vs subclinical KC
Using the Pentacam HR system alone or UHR-OCT
alone, the logistic regression classifier showed good dis-
criminating power, reaching an AUC = 0.74 (Pentacam
HR system) and an AUC = 0.90 (UHR-OCT); the neural
network classifier reached an AUC = 0.68 (Pentacam HR
system) and an AUC = 0.88 (UHR-OCT). After combin-
ing features from the Pentacam HR system and UHR-
OCT, the classifier reached an AUC = 0.90 for the

Table 2 List of parameters measured by the Pentacam HR System, UHR-OCT and submitted to the neural network classifier for
discriminating sub KC and KC corneas from normal healthy corneas

Pentacam HR System Parameters UHR-OCT Parameters

Curvature-Derived
Parameters

Elevation-Derived
Parameters

Pachymetry-Derived
Parameters

Integrated
Parameters

OCT-Derived Parameters

Anterior surface: Anterior surface: Thinnest point ISV Epithelium Bowman’s Layer Stroma

K1 (Front) Emax (Front) Corneal Volume IHA EPSD BPSD SPSD

K2 (Front) Ecenter (Front) IVA EPV BPV SPV

Km (Front) IHD EEI (I/S) BEI(I/S) SEI(I/S)

Kmax (Front) KI EEI-MAX (I/S) BEI-MAX (I/S) SEI-MAX (I/S)

Posterior surface: Posterior surface: Rmin EMean (total) BMean (total) SMean (total)

K1 (Back) Emax (Back) CKI Emean (I) Bmean (I) Smean (I)

K2 (Back) Ecenter (Back) Emean (S) Bmean (S) Smean (S)

Km (Back) Emin (I) Bmin (I) Smin (I)

Kmax (Back) Emax (S) Bmax (S) Smax (S)

UHR-OCT= ultra-high resolution optical coherence tomography; Sub KC= subclinical keratoconus; KC= keratoconus; K1= flattest keratometric reading; K2= steepest
keratometric reading; Km= mean keratometric reading; Kmax= maximum keratometric reading; Emax= maximum elevation reading; Emin= minimum elevation
reading; Ecenter= corneal central elevation reading; ISV= index of surface variance; IHA= index of height asymmetry; IVA= index of vertical asymmetry; IHD= index
of height decentration; KI= keratoconus index; Rmin= smallest radius; CKI= central keratoconus index; EPSD, BPSD, SPSD: standard deviation of thickness profile
between individual and normal pattern of epithelium, Bowman’s layer and stroma; EPV, BPV, SPV: profile variation of epithelium, Bowman’s layer or stroma
thickness profile within each individual; EEI (I/S), BEI (I/S), SEI (I/S): ectasia index of epithelium, Bowman’s layer or stroma; EEI-MAX (I/S), BEI-MAX (I/S), SEI-MAX (I/S):
Maximum ectasia index of epithelium layer, Bowman’s layer or stroma; EMean (total); BMean (total); SMean (total): mean thickness of epithelium, Bowman’s layer
or stroma; EMean (I), Bmean (I), Smean (I): mean inferior thickness of epithelium; Bowman’s layer or stroma; EMean (S), Bmean (S), Smean (S): mean superior
thickness of epithelium; Bowman’s layer or stroma; Emin (I), Bmin (I), Smin (I): the thinnest thickness of the inferior epithelium; Bowman’s layer or stroma thickness
map; Emax(S), Bmax(S), Smax (S): the thickest thickness of the superior epithelium; Bowman’s layer or stroma thickness map

Table 3 Performance of the discriminating rules generated using logistic regression and neural network classifiers for differentiating
sub KC and KC corneas from normal corneas

Normal vs. Sub KC Normal vs. KC

Sensitivity 1-Specificity AUC Sensitivity 1-Specificity AUC

Logistic Regression

Pentacam HR system 83.8% 88.7% 0.74 100% 100% 1.00

UHR-OCT 95.3% 94.5% 0.90 98.0% 100% 0.98

Pentacam HR system
& UHR-OCT

95.1% 94.8% 0.90 100% 99.4% 0.99

Neural Network

Pentacam HR system 82.1% 82.6% 0.68 100% 100% 1.00

UHR-OCT 94.8% 93.4% 0.88 99.5% 99% 0.98

Pentacam HR system
& UHR-OCT

98.5% 94.7% 0.93 100% 100% 1.00

UHR-OCT= ultra-high resolution optical coherence tomography; Sub KC= subclinical keratoconus group; KC= keratoconus group
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logistic regression classifier. For the neural network clas-
sifier, the AUC was 0.93 (Table 3). Using the Pentacam
HR system alone, by ranking Fisher’s score, the variable
that contributed to discrimination most was Emax
(Back) (Fig. 3a). Using UHR-OCT alone or combining
the UHR-OCT with the Pentacam HR system, the fea-
ture that contributed to discrimination most by ranking
was EPV (Fig. 3b and c). We listed the detailed informa-
tion of the top 5 features that contributed the most to
the classifier in Table 4.

Normal vs KC
Both classifiers showed great discriminating power using
the Pentacam HR system alone (Both AUCs = 1.0),
UHR-OCT alone (Bothe AUCs = 0.98) or combined
Pentacam HR system and UHR-OCT, and the AUC of
the logistic regression classifier is 0.99 and for the neural
network classifier is 1.00 (Table 3). Whether using the
Pentacam HR system alone or combined with the UHR-
OCT, by ranking Fisher’s score, the variable that con-
tributed the most to discrimination was Emax (Back)
(Fig. 4a and c). Using UHR-OCT alone, the variable that
contributed the most to discrimination by ranking was
SEI (I/S) (Fig. 4b).

Discussion
Our study demonstrated that machine learning-derived
classifiers provide good differential power to differenti-
ate subclinical KC eyes from normal eyes. Multiple
instrument-combined variables achieved better per-
formance than single instrument-derived variables. To
differentiate subclinical KC eyes from normal eyes,
UHR-OCT variables contributed more than the
Scheimpflug-based camera variables. To the best of
our knowledge, this is the first study using combined
SD-OCT and Scheimpflug-based camera variables
through a machine learning classifier to differentiate
subclinical KC eyes from normal eyes and compare the
differentiation power of each variable.
Typical KC signs, such as Fleischer’s Ring and stromal

thinning, can be easily observed by a slit-lamp biomicro-
scope [16]. The abnormally high K value or I-S value
detected by Placido ring-based corneal tomography can
also indicate abnormal KC corneas [17]. These indices are
widely recognized among clinicians. However, the nature
of these instruments limits their sensitivity to detect subtle
changes in the cornea. In contrast, Scheimpflug-based
cameras can acquire multiple corneal morphology infor-
mation, including both anterior and posterior curvature

Fig. 3 Fisher’s score of each variable of different classifiers to discriminate subclinical KC eyes from normal eyes. For subclinical KC eyes, using the
Pentacam HR system alone, the features contributing to discrimination most were the maximum elevation values in the 5 mm area (a). Using
UHR-OCT alone or combining it with the Pentacam HR system, the variable that contributed to discrimination most by ranking was EPV (b, c). KC:
keratoconus. UHR-OCT: Ultra-high-resolution optical coherence tomography; EPV: epithelium profile variation
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Table 4 Demographics of top 5 variables listed in the Fisher’s scoring system using different variables from Pentacam HR model
and UHR-OCT model to discriminate sub-clinical KC group from normal group

Mean ± SD Intragroup Comparison

Normal Sub KC KC Normal vs. Sub KC Normal vs. KC

Features P

Pentacam & UHR-OCT Model

EPV (μm) b 2.8 ± 0.7 4.1 ± 1.0 6.8 ± 2.5 < 0.001 < 0.001

BPV (μm) b 1.3 ± 0.3 1.7 ± 0.5 2.6 ± 1.0 < 0.001 < 0.001

EMax (back) (mm) a 4.8 ± 2.5 11.1 ± 7.4 28.5 ± 10.3 < 0.001 < 0.001

ISV a 17.2 ± 5.9 24.5 ± 8.3 91.0 ± 37.2 < 0.001 < 0.001

KI a 1.02 ± 0.03 1.05 ± 0.03 1.21 ± 0.12 < 0.001 < 0.001

Pentacam Model

IVA 0.1 ± 0.1 0.2 ± 0.1 0.8 ± 0.4 < 0.001 < 0.001

Ecenter (back) (mm) −0.6 ± 2.2 1.9 ± 5.0 14.7 ± 10.6 0.012 < 0.001

UHR-OCT Model

EPSD (μm) 3.3 ± 1.1 4.4 ± 1.2 7.9 ± 2.4 < 0.001 < 0.001

BEI-MAX (I/S) (μm) 78.6 ± 5.4 63.6 ± 23.4 50.0 ± 14.4 0.001 < 0.001

BMIN (I) (μm) 15.2 ± 1.5 12.4 ± 4.5 9.4 ± 2.6 0.001 < 0.001
a Included in the UHR-OCT model. b Included in the Pentacam model. Sub KC= subclinical keratoconus group; KC= keratoconus group; UHR-OCT= ultra-high
resolution optical coherence tomography; EPV= profile variation of epithelium; BPV= profile variation of Bowman’s layer; Emax (back): max elevation of 5 mm best-
fit sphere of back corneal surface. ISV= index of surface variance; KI= keratoconus index; IVA= index of vertical asymmetry; Ecenter (back): central elevation of 5
mm best-fit sphere of back corneal surface; EPSD = epithelium profile standard deviation; BEI-MAX: maximum ectasia index of Bowman’s layer; Bmin (I): the
thinnest thickness of the inferior Bowman’s layer thickness map

Fig. 4 Fisher’s score of each variable of different classifiers to discriminate KC eyes from normal eyes. For KC eyes, using the Pentacam HR system
alone and combining it with UHR-OCT, the feature that contributed to discrimination most by ranking was the maximum elevation value in the
5 mm area (a, c). Using UHR-OCT alone, the feature that contributed to discrimination most by ranking was SEI (I/S) (b). KC: keratoconus. UHR-
OCT: Ultra-high-resolution optical coherence tomography; SEI (I/S): Localized thinning in the vertical meridian in the stroma
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and elevation and regional corneal thickness [18]. In
addition, UHR-OCT can achieve high resolution in
corneal tissues, providing information on corneal micro-
structure in depth [19]. The advantages of requiring de-
tailed information were reflected on our results; combined
Scheimpflug-based camera and UHR-OCT variables
reached excellent precision (0.98) to differentiate KC eyes
from normal eyes, even with a single machine. However,
for most clinicians, the real challenge is to diagnose
subclinical KC early.
Unlike KC, the identification of subclinical KC is often

challenging in routine clinical practice, as it is usually
asymptomatic and is considered the most significant risk
factor for the development of iatrogenic ectasia after LA-
SIK [2]. Our previous studies reported that the use of
epithelium and Bowman’s layer features extracted from
UHR–OCT [7] or the parameters from the Pentacam
HR system alone [20] can reach good differential power
for subclinical KC detection. However, because of the
difficulty in correcting the optical distortion of OCT
images, the OCT system lacks topography indices.
Additionally, due to the resolution limitations of the
Pentacam HR system, the Pentacam camera cannot
accurately detect corneal sublayers. Our current study
used a similar approach and reached good differential
power for subclinical KC detection. Hence, combining
the features of the Pentacam HR system and UHR-OCT
will help us fully understand the subtle structural
changes in subclinical KC eyes and better differentiate
them from normal eyes.
Attempts have been made to utilize combined instru-

ments and demonstrate good differentiation power com-
pared to single instruments. Amobrosio et al. studied
combined Scheimpflug-based corneal tomography and
biomechanics and found enhanced corneal ectasia detec-
tion [21]. This study indicated the potential application
of multiple instrument-derived variables in diagnosing
subclinical KC. Recently, Hwang et al. used multivariable
analysis, achieving great diagnostic power of subclinical
KC corneas using combined SD-OCT and Scheimpflug-
based camera variables (AUC = 1.0) [8]. However, the in-
clusion criteria of subclinical KC subjects for that study
were controversial, and the processing of these indices
was time consuming and not user friendly for clinical
application [22, 23]. We used a logistic regression classi-
fier to differentiate subclinical KC in this study; however,
the precision accuracy was not improved compared to a
single machine-derived logistic regression model. When
the feature number is large, the logistic regression classi-
fier is prone to underfitting, and the prediction accuracy
will consequently be limited in this scenario. A machine-
learning-based model can avoid this issue. Hence, ma-
chine learning (ML) models, such as neural networks,
are more appropriate when multiple instruments are

used. Our results showed that the AUCs of the neural
network classifier was higher than that of the logistic re-
gression classifier.
Neural networks, as machine learning classifiers, have

multiple advantages, such as self-learning and being free
from data loss, and similar approaches have been applied
to KC diagnosis for a few years. Smolek et al. introduced
a neural network approach using corneal topographic var-
iables to detect KC and KC suspected eyes. The neural
network approach demonstrated superior accuracy to the
manual screening approach [9]. Other machine learning
classifiers have also been applied to KC diagnosis.
Arbelaez et al. used both anterior and posterior variables
from Scheimpflug-based cameras and corneal topography,
and the SVM classifier had a differential power of 0.92 for
subclinical KC eyes [11]. Smadja et al. used variables from
Scheimpflug-based cameras and automated decision-tree
classification to detect subclinical KC eyes and achieved
excellent sensitivity (93.6%) and specificity (97.2%). We
summarized different machine learning classifier applica-
tions in KC diagnosis in Table 5 and compared our results
with those of other studies. We found that in our study,
the automated classifier based on the Scheimpflug-based
camera and UHR-OCT achieved similar differential power
compared to other studies with a smaller sample size. The
results indicated that sublayer information of the cornea
derived from the UHR-OCT and multiple features derived
from the Pentacam HR system were useful for differ-
entiating subclinical KC eyes from normal eyes. These
successful applications of machine learning-based
classifiers and the high differential power indicated
that machine learning-based automated classification
systems are a powerful tool for screening subclinical
KC eyes.
Utilizing Fisher’s scoring system allowed us to under-

stand each individual feature’s contribution to the classi-
fier by displays and comparisons through a visualization
tool. Using the Scheimpflug-based camera alone, the max-
imum elevation value had the greatest influence on the
neural network classifier. Although the diagnostic value of
posterior surface variables from Scheimpflug-based
cameras remains controversial [29], the importance of the
variables extracted from the posterior elevation map of
Scheimpflug-based cameras for screening is well recog-
nized [18, 29–31]. Some studies showed that some vari-
ables, such as BAD-D from Pentacam, exhibited good
performance in discriminating subclinical KC eyes from
normal eyes [32]; a possible reason is that BAD-D utilized
a regression model combined with some variables in ele-
vations of both anterior and posterior corneal surfaces,
corneal thickness, location of the thinnest point, Kmax,
pachymetric regression and Ambrosio relational thickness
[33]. But Hwang et al. implied BAD-D and similar individ-
ual metrics did not perform well enough to accurately
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distinguish subclinical KC eyes from a normal cohort [8].
This further implies that a model that combines more
corneal parameters will assist clinicians in discriminating
subclinical KC eyes from normal eyes. The elevation map
of our study was based on an 8mm best-fit sphere (BFS).
Some investigators have noted that the diagnostic value of
an elevation map based on an 8mm enhanced BFS [31] or
best-fit toric ellipsoid [34] should be considered, and fu-
ture studies based on these elevation variables should also
be considered. When using the UHR-OCT system alone,
the EPV had the greatest influence on the neural network
classifier, which echoed previous studies using epithelium
thickness maps from OCT [6, 8]. The BPV also influenced
the classifier, which echoed the results of several studies
showing that irregularities in the Bowman layer can im-
prove the detection of subclinical KC [35, 36]. The lack of
automated Bowman’s layer analysis in a commercial
anterior-segment OCT decreases awareness of the early
change of Bowman’s layer in subclinical KC patients. This
may result from the fact that current commercial

anterior-segment OCT does not have enough bandwidth
to detect the earliest changes with KC occurring at the
level of Bowman’s layer, even with our UHR-OCT system.
Future technical developments, such as new UHR-OCTs
at an axial resolution of 1.5 μm level [37, 38] combined
with 3D Bowman’s layer topography [39, 40] and deep
learning automated corneal segmentation techniques [41],
can help scientists and clinicians detect the true earliest
change of the Bowman’s layer in subclinical KC patients.
Furthermore, the complexity of the subclinical KC

screening system precludes reliance on a single machine,
and the combination of clinical image modalities is the
ultimate goal. Interestingly, when combining the
Scheimpflug-based camera with UHR-OCT, the elevation
variable from the Scheimpflug-based camera has superior
differential ability compared with the UHR-OCT variables
for screening KC eyes, but for subclinical KC eyes, the
UHR-OCT-based single variable contributed more than
the integrated variables from the Scheimpflug-based cam-
era (ISV, IHD, etc.). The abundant depth information

Table 5 Summary of studies using machine learning classifier for different KC or subclinical KC eyes from normal eyes

Authors Year Instruments ML classifier Subjects Results

Current Study 2019 UHR-OCT, Scheimpflug
camera

Neural network 38 eyes with KC, 33 eyes with
subclinical KC, 50 normal eyes

93% precision for subclinical KC eyes, 99%
precision for KC eyes

Smolek et al. [9] 1997 Corneal topography Neural network 6 KC suspect eyes, 33 eyes
with KC

100% accuracy, sensitivity and specificity for
all KC suspect and KC eyes

Accardo et al. [24] 2002 Corneal topography Neural network 120 eyes with early KC eyes,
120 normal eyes

94.1% sensitivity, 97.6% specificity for early
KC eyes

Arbelaez et al. [11] 2012 Scheimpflug camera
and Placido corneal
topography

SVM 877 eyes with KC, 426 eyes
with subclinical KC, 1259
healthy control eyes

98.2% accuracy (95.0% sensitivity and 99.3%
specificity) for KC eyes and 97.3% accuracy
(92.0% sensitivity and 97.7% specificity) for
subclinical KC eyes

Smadja et al. [10] 2013 Scheimpflug camera Decision tree 148 eyes with KC, 177 eyes
with forme fruste KC, 372
healthy control eyes

100% sensitivity and 99.5% specificity for KC
eyes, 93.6% sensitivity and 97.2% specificity
for forme fruste KC eyes

Kovacs et al. [25] 2016 Scheimpflug camera Neural network 60 eyes with KC, 15 eyes
with preclinical KC, 60
healthy control eyes

0.99 AUC, 100% sensitivity and 98%
specificity for KC eyes, 0.96 AUC, 92%
sensitivity and 85% specificity for preclinical
KC eyes

Saad et al. [26] 2016 Placido based corneal
topography and
corneal wavefront
measurements

Neural network 62 eyes with forme fruste
KC, 114 normal eyes

0.97 AUC, 63% sensitivity and 82% for forme
fruste KC, 100% sensitivity and 82% specificity
for KC eyes

Hidalgo et al. [27] 2016 Scheimpflug camera SVM 454 eyes with KC, 67 eyes
with forme fruste KC, 194
normal eyes

98.9% accuracy, 99.1% sensitivity and 98.5%
specificity for KC eyes, 93.1% accuracy, 79.1%
sensitivity and 97.7% specificity for forme
fruste KC eyes

Ambrosio et al. [21] 2017 Scheimpflug camera
and biomechanical
camera

SVM, random
forest

111 eyes with KC, 227
normal eyes

1.0 AUC for KC eyes

Lopes et al. [12] 2018 Scheimpflug camera Random forest 71 eyes with ectasia
susceptibility, 182 eyes
with KC, 2980 normal
eyes

85.2% sensitivity and 0.966 specificity, 0.968
AUC for suspected KC eyes.

Issarti et al. [28] 2019 Scheimpflug camera Neural network 77 eyes with suspect KC,
312 normal eyes

96.56% accuracy, 97.78% sensitivity and
95.56% specificity for suspect KC eyes

KC= keratoconus; UHR-OCT= ultra-high-resolution optical coherence tomography; ML= machine learning
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extracted from the epithelium detected by UHR-OCT
contributed greatly to this finding, which indicated that
segmented corneal layer information has great value in
the diagnosis of subclinical KC but may be underutilized
in clinical practice. There are some reasons for this
phenomenon: first, the high cost of UHR-OCT restricts its
application to clinics; second, clinicians cannot easily
understand this information because of the lack of inter-
pretation of segmented cornea layer information; third,
automated segmented cornea layer (including epithelium
and Bowman’s layer) software is not applicable to most
commercial OCT systems.
Our study has several limitations. First, we used cross-

validation in this study, and further study involving
human experienced expert validation is needed. Second,
the sample size of our study was limited, and further
larger-scale studies are needed to validate our results.
Third, we only used image modality features for the
screening system, and whether biomechanical variables
contributed to the system is still unknown. Fourth, we
only tested parts of commonly used variables, and a
study of more variables to assess overfitting is needed.
Fifth, we only recruited subclinical KC and KC patients
in this study, and our model was limited only to this
disease. Future plans to recruit patients with additional
corneal anomalies, such as post-Lasik ectasia and
corneal warpage, could enhance our model. Sixth, our
current model lacked comparison results with Pentacam
indices such as PRFI and BAD-D, further studies using
Pentacam with the latest software version can further
explore machine learning models and comparisons with
these indices.

Conclusion
In conclusion, our study highlighted the value of
combined instrument features from Scheimpflug-based
cameras and UHR-OCT. These findings suggested that
combined variables demonstrated better differential
power than single-instrument variables. Furthermore,
the UHR-OCT features showed superior value compared
with the Scheimpflug-based camera features when differ-
entiating subclinical KC eyes from normal eyes. The ma-
chine learning classifier could be a powerful automated
screening tool for subclinical KC identification. We be-
lieve that our findings will direct future studies toward
the best discrimination utilizing machine learning classi-
fiers and multiple instrument-based features.
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