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Abstract

In clinical ophthalmology, a variety of image-related diagnostic techniques have begun to offer unprecedented
insights into eye diseases based on morphological datasets with millions of data points. Artificial intelligence (AI),
inspired by the human multilayered neuronal system, has shown astonishing success within some visual and
auditory recognition tasks. In these tasks, AI can analyze digital data in a comprehensive, rapid and non-invasive
manner. Bioinformatics has become a focus particularly in the field of medical imaging, where it is driven by
enhanced computing power and cloud storage, as well as utilization of novel algorithms and generation of data in
massive quantities. Machine learning (ML) is an important branch in the field of AI. The overall potential of ML to
automatically pinpoint, identify and grade pathological features in ocular diseases will empower ophthalmologists
to provide high-quality diagnosis and facilitate personalized health care in the near future. This review offers
perspectives on the origin, development, and applications of ML technology, particularly regarding its applications
in ophthalmic imaging modalities.
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Background
Medical imaging is important in clinical diagnosis and
individualized treatment of eye diseases [1–3]. This tech-
nology can provide high-resolution information regard-
ing anatomic and functional changes. In recent years,
imaging techniques have developed rapidly, together
with therapeutic advances [4]. However, with the in-
creasing sophistication of imaging technology, compre-
hension and management of eye disease has become
more complex due to the large numbers of images and
findings that can be recorded for individual patients, as
well as the hypotheses supported by these data. Thus,
each patient has become a “big data” challenge [5].
Conventional diagnostic methods greatly depend on

physicians’ professional experience and knowledge,
which can lead to a high rate of misdiagnosis and

wastage of medical data [6]. The new era of clinical diag-
nostics and therapeutics urgently requires intelligent
tools to manage medical data safely and efficiently. Arti-
ficial intelligence (AI) has been widely applied across
various contexts in medicine (Fig. 1). In particular, col-
laborations between medical imaging and AI disciplines
have proven highly productive in the fields of radiology,
dermatology and pathology [7].
AI has improved the performance of many challenging

tasks in medical imaging, such as diagnosis of cutaneous
malignancies using skin photographs [8], detection of
lung cancer using chest images [9], prediction of cardio-
vascular disease risk using computer tomographic (CT)
[10], detection of pulmonary embolism using CT angiog-
raphy [11], analysis of breast histopathology using tissue
sections [12], detection of polyps using virtual colonos-
copy [13], diagnosis of glioma using magnetic resonance
imaging (MRI) [14], and diagnosis of neurological
disease using functional MRI (e.g., Alzheimer’s disease)
[15–17]. Furthermore, AI has a considerable impact in
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ophthalmology, mainly through accurate and efficient
image interpretation [18].
The rapid increase in AI requires ophthalmologists to

embrace intelligent algorithms and gain a greater under-
standing of the abilities of the technology, and thus en-
able them to evaluate and apply AI in a constructive
manner. Here, we comprehensively reviewed the general
applications of ML technology in ophthalmic imaging
modalities, including the three most commonly used
methods: fundus photography (FP), optical coherence
tomography (OCT) and slit-lamp imaging. Throughout
the review, we introduce basic definitions of terms com-
monly used when discussing ML applications, as well as
the workflow for building AI models and an overview of
the balance between the challenges and opportunities
for ML technology in ophthalmic imaging.

Main text
From machine learning (ML) to deep learning (DL)
AI refers to the field of computer science that mimics
human cognitive function [19]. ML is a subfield of AI
that allows computers to learn from a set of data and
subsequently make predictions; these processes can be
classified as supervised and unsupervised learning.
In supervised learning, a machine is trained with input

data previously labeled by humans to predict the desired

outcome such that it can solve classification and regres-
sion problems. However, this approach is time-
consuming because it requires a considerable amount of
data to be labeled manually. Conversely, in unsupervised
learning, a machine is provided input data that are not
explicitly labeled; the machine is then permitted to iden-
tify structures and patterns from the set of objects, with-
out human influence. Conventional ML algorithms
include decision tree [20], naive Bayes algorithm [21],
random forest (RF) [22], support vector machine (SVM)
[23, 24], k-nearest neighbor (KNN) [25] (Table 1). Des-
pite obtaining good performance with small datasets,
ML network architecture makes them more prone to fail
in reaching the convergence and overfitting training
dataset because of manual features selection process,
which limits their application.
Among the techniques comprising ML, one of the

most promising is DL (Fig. 2) [26]. This mimics the op-
eration of the human brain using multiple layers of arti-
ficial neural networks that can generate automated
predictions from input data. DL currently has central
roles in various tasks, including image recognition (e.g.,
facial recognition in Facebook, image search in Google),
virtual assistant (e.g., Apple’s Siri, Amazon’s Alexa, and
Microsoft’s Cortana), and diagnostic assistant systems
(e.g. IBM Watson for Oncology). Representative DL

Fig. 1 The applications of AI techniques in the eye clinic

Table 1 Representative algorithms in ML and DL

AI Techniques Classification Algorithms

Conventional Machine learning Supervised learning SVM, Linear Regression, Logistic Regression, RF, KNN, Naïve Bayesian, Decision Tree,
AdaBoost, Neural network methods

Unsupervised learning Principal component analysis, K-means, Expectation-maximization, Mean shift, Hierarchical
clustering, Affinity propagation, Iterative self-organizing data, fuzzy C-means systems

Reinforcement learning Q-learning, Temporal difference learning, State-Action-Reward-State-Action, Teaching-Box
systems, Maja systems

Deep learning DBN Convolutional deep belief network, Conditional restricted Boltzmann machine

CNN AlexNet, GoogleNet, Visual geometry group network (VGG), Deep Residual Learning,
Inception v4 (v2, v3), Restnet-152 (34,50,101), LeNet

RNN Bidirectional RNN, Long short-term memory

DBN=deep belief network; CNN = convolution neural network; RNN = recurrent neural network; SVM = support vector machine; RF = random forest;
KNN = k-nearest neighbor
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algorithms are deep belief network (DBN) [27, 28], con-
volution neural network (CNN) [29], recurrent neural
network (RNN) [30, 31] (Table 1). Compared with con-
ventional ML, the architecture of DL uses more hidden
layers to decode image raw data without the need to
handcraft specific features or use feature selection algo-
rithm, which has the advantage of efficiency and can

explore more complex non-linear pattern in the data
(Fig. 2).
Visual representation of some common algorithms in

ML and DL is shown in Fig. 3. The most commonly ap-
plied algorithm in image recognition is CNN. Existing
CNN architectures that have been the most widely used
include LeNet [32], AlexNet [33], ResNet [34],

Fig. 2 The relationship among the subsets of AI. Machine learning techniques occurred in the 1980s, while deep learning techniques has been
applied since the 2010s. Abbreviations: ML, machine learning; DL, deep learning

Fig. 3 Schematic diagram of common algorithms in AI. a SVM are supervised learning models used to analyze the classification and regression of
data. b RFs are an ensemble learning method that use multiple trees to train and predict samples. c CNNs are composed of layers of stacked
neurons that can learn complex functions. d Reinforcement learning algorithms are used to train the action of an agent on an environment.
Abbreviations: SVM, support vector machine; RF, random forest; CNN, convolutional neural networks
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GoogleNet [35] (Fig. 4), which showed robust perform-
ance in the ImageNet Large Scale Visual Recognition
Competition [36] and has been successfully applied in
facial detection [37], real-time language translation,
robot navigation and pedestrian detection [38]. There
are various open source tools for development and im-
plementation of AI algorithms; these tools are compat-
ible with many modern programming languages. We
summarized some of the most commonly used libraries
for DL in Fig. 5.

AI models building progress
DL neural networks use convolutional parameter layers
to learn filters iteratively, which extract hierarchical fea-
ture maps from input images, learning the intricate
structures of complicated features (such as shapes)
through simpler features (such as line) and give the de-
sired classification as output. These convolutional layers
are placed in turn, so that each layer transforms the in-
put image and propagates the output information into
the next layer.
During the training progress, the parameters (mathem-

atical functions) of the neural network are initially set to
random values. The loss function is used to estimate the
degree of inconsistency between the predicted value and
the true value of the model. Next, the output provided
by the function is compared to known features in the
training set. Then, parameters of the function are
slightly modified by the optimizer so that they can ap-
proximate or reach the optimal value, thereby minimiz-
ing the loss function. In general, the smaller the loss
function, the better the model’s robustness. This process
is repeated many times, and the function “learns” how to
accurately calculate the features from the pixel intensity
of the image for all images in the training set. The most
commonly used network is the CNN, which uses a func-
tion that first merges nearby pixels into local features
and then aggregates them into global features.
Figure 6a represents an abstraction of the algorithmic

pipeline. The model characterizes the diagnosis of a dis-
ease based on an expert-labelled ground truth. The steps
for building an AI model include pre-processing image
data, training data, validating and testing the model from
a large-scale dataset, and eventually evaluate the per-
formance of the trained model.

Fig. 4 Top-5 error of representative CNN algorithms. Top-5 error:
The probability of which none of the first five most probable labels
given by the image classification algorithm is correct. Abbreviations:
VGG, visual geometry group; GoogleNet, google inception net;
ResNet, residual network

Fig. 5 Open source DL research libraries with major programming languages including Python, C++, R, Java. Python libraries tend to be the most
popular and can be used to implement recently available algorithms. Abbreviations: DL, deep learning
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Image data preprocessing
To unify images from different sources and rearrange
them into a uniform format, multiple preprocessing
steps can be performed [39]: (1) Cleaning up the data: It
is the process of reviewing and verifying data, which
can remove duplicate information and correct existing
errors. (2) Data normalization: The original data will be
resized to a common scale which is suitable for com-
prehensive comparative evaluation. (3) Noise reduction:
It will greatly affect the convergence speed of the data
and even the accuracy of the trained model if there are
a lot of noise in the image data.

Training, validation and testing
To achieve a better performance, the base dataset is ran-
domly split into two subsets: one for the model building;
and one for testing the model’s performance. The former
dataset is further partitioned into training dataset and
validation dataset. The training dataset is used to de-
velop the learning model, the validation dataset is used
for parameter selection and tuning, and the test dataset
was used to evaluate the model.

During the training process, one way to optimize the
model and estimate the accuracy of the algorithm when
there are insufficient training samples is by using the
cross-validation method [40]. All data for modeling is
randomly partitioned into k equal sized complementary
subsamples. (k-1) folds are selected as the training set
and one is selected as the validation set. This process is
then repeated across k iterations using a different set of
training and testing examples (Fig. 6b).

Evaluation metrics
After building the best learning model, evaluation indi-
cators including accuracy, sensitivity and specificity are
compared (Table 2). Furthermore, the receiver operating
characteristic curve (ROC), and the area under the ROC
curve (AUC) indicators are indicative of vital objective
evaluation in the task of classification. AUC can measure
the accuracies of the positive and negative samples at
the same time. The closer the ROC curve is located to
upper-left hand corner, the higher the value of AUC,
and the better the model’s performance will be.

Fig. 6 A diagram showing data processing. a The typical workflow of AI experimental process. b Illustration of k-fold cross-validation techniques
(k = 10). Abbreviation: AUC, area under the curve

Tong et al. Eye and Vision            (2020) 7:22 Page 5 of 15



Applications of AI in ophthalmic imaging
Recently, there has been a considerable increase in the
use of AI techniques for medical imaging, from process-
ing to interpretation. MRI and CT are collectively used
in more than 50% of current articles involving applica-
tions of AI in radiology, electroencephalography, electro-
cardiography, X-ray imaging, ultrasound imaging and
angiography (Fig. 7a). Among the applications of AI in
ophthalmology, research efforts have focused on diseases
with high incidences, such as diabetic retinopathy (DR),
glaucoma, age-related macular degeneration (AMD) and
cataract (Fig. 7b).
AI may be useful for alleviating clinical workloads as it

allows physicians with minimal experience to screen for
diseases and detect them in an efficient and objective
manner. In the field of ophthalmology, AI has gained
increasing interest because it can be used in detecting
clinically significant features for diagnostic and prognos-
tic purposes. There have been a number of researches

comparing performance between experts and algorithms
in diagnosing different ophthalmic imaging modalities.

Fundus photograph (FP)
FP is a common ophthalmic imaging technique, in which
optical cameras are used to obtain enlarged images of
retinal tissues; these retinal photographs are suitable for
monitoring, diagnosis, and treatment planning with
respect to eye diseases. Various studies have involved the
application of AI technology with FP to the diagnosis,
grading and monitoring of eye diseases [41, 42].
All diabetic patients need regular retinal screening for

early detection and timely treatment of DR [43, 44],
which is a leading cause of preventable blindness that
affects millions of people worldwide [45]. Specific hall-
marks in early DR including exudates [46–48], cotton-
wool spots [49, 50], macular edema [51] and micro-
aneurysms [52, 53] in the retina can be viewed by FP
and identified by AI methods. Most model outputs

Table 2 Common metrics in AI model evaluation

Evaluation metrics Definitions

Accuracy The proportion of both positives and negatives that are correctly identified; the higher the accuracy, the
better the classifier

Sensitivity/Recall The proportion of positives that are correctly identified

Specificity The proportion of negatives that are correctly identified

Precision The proportion of positives that are correctly identified among all positive identified samples

Kappa value To show the actual agreement between two sets of observations

Dice coefficient/F1 score Harmonic average of the precision and recall, where an F1 score reaches its best value at 1 and worst at 0

Fig. 7 Publication statistics of AI application. a. Publication statistics of AI application in different imaging modalities per year indexed on
PubMed database (Jan 1st, 2016 to Oct 1st, 2019). b. Publication statistics of AI application in diagnosing different ophthalmological diseases per
year indexed on PubMed database (Jan 1st, 2016 to Oct 1st, 2019)
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belong to binary or multi-class classification tasks. Gul-
shan et al. were the first to use a deep CNN (DCNN) for
automated detection of DR [54]. In another study, with a
large-scale dataset (494,661 retinal images), a DL system
was developed to automatically detect DR, glaucoma,
and AMD with respective AUCs of 93.6, 94.2 and 93.1%
[55]. Keel and colleagues developed a DL-based DR
screening model for use in an endocrinology outpatient
clinic, which resulted in 96% patient satisfaction [56].
Generally, conventional FP involves the acquisition of

photographs at one-field 45° to the posterior pole of the
retina, although the entire retina can be observed at an
angle of 230° [57]. Takahashi et al. constructed fundus
images of four different shooting directions and trained
the GoogleNet DCNN to study single fundus images or
four synthetic fundus photos intelligently [58]. The re-
sults showed that the accuracy was higher for synthetic
fundus images and suggested that wider ranges of fun-
dus images should be used for DR diagnosis. Recently,
ultra-wide field scanning laser ophthalmoscopy was
introduced; this technology enables scanning of 80% of
the fundus area [59]. Diagnosis with wide range FP is an
emerging trend in AI diagnostic research, and more
advanced algorithms are needed to support its continued
growth.
AI can be used in clinical practice to analyze retinal

images for disease screening. The Google Chips and
Amazon DeepLens cameras, allow embedding of ad-
vanced algorithms within devices, which is a useful ap-
proach in various medical fields [60]. Rajalakshmi et al.
combined an AI-based grading algorithm with a smart-
phone-based retinal imaging device for potential use in
mass retinal screening of people with type 2 diabetes
[61]. In 2018, IDx-DR was approved as the first fully
autonomous AI-based DR diagnostic system by the
United States Food and Drug Administration (FDA)

[62]; this study is a milestone as the first prospective as-
sessment of AI in the real-world. We summarized the
medical AI products approved by the FDA (Table 3).
In addition, FP can be used to diagnose other retinal

diseases, such as glaucoma, retinopathy of prematurity
(ROP), and AMD [63–67]. Recent efforts have aimed to
automate pupillary tracking by integrating a motor into
the fundus camera. Google Brain has been shown to pre-
dict subjects’ cardiovascular risk factors, including age,
systolic blood pressure, hemoglobin A1c, and sex from a
single fundus image; this task is impossible for profes-
sional clinicians [68].
Important issues in the global implementation of ML/

DL are the use of big data sharing and open access to
scientific data. We have summarized the most com-
monly used public data-sets of fundus photographs for
model training (Table 4). Among them, Kaggle is one of
the largest data modeling and data analysis competition
platforms in the world, which provides over 50,000 ret-
inal images taken under various shooting conditions,
with 0–4 severity level annotated by clinicians. Besides,
EyePACS and MESSIDOR are the most commonly used
image datasets for DR classification. At present, public
eye datasets are mainly applied to automated DR and
glaucoma detection, but few for other ophthalmic
diseases.

Optical coherence tomography (OCT)
OCT is a non-contact and non-invasive optical image-
based diagnostic technology, which provides extensive
information regarding retinal morphology and assists in
the diagnosis of various macular diseases [76]. Thirty
million ophthalmic OCT procedures are performed each
year; this number is comparable in scale to other med-
ical imaging modalities, such as MRI or CT [77–80].

Table 3 FDA cleared medical AI products

AI products Production companies Applications

Kardia App Kardia Band, Alive Cor, United States Clinical grade wearable electrocardiogram in Apple Watch

The WAVE Clinical Platform Excel Medical Electronics, United States Patient surveillance and predictive algorithm platform

Embrace Watch Embrace, United States The smartwatch that uses sensors to measure stress and predict seizures

Viz LVO Viz.AI, United States Automatic detection of large vessel occlusion in suspected stroke patients

Cognoa App Cognoa, United States An app based on ML that can help clinicians diagnose autism rapidly

Guardian Connect Medtronic, United States The continuous glucose monitoring system for people on multiple daily
insulin injections

IDx-DR IDx, United States To automatic diagnose DR before it causes blindness

OsteoDetect Imagen Technologies, United States A type of computer-aided detection and diagnosis software designed to
detect wrist fractures in patients

DreaMed Advisor Pro DreaMed Diabetes, Petah Tikvah, Israel Automated insulin pump setting adjustments in patients with type 1 diabetes

Viz CTP Viz.AI, United States A software package to perform image processing and analysis of CT perfusion
scans of the brain

FDA = U.S. food and drug administration; DR = diabetic retinopathy; CT = computer tomographic; ML =machine learning
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OCT algorithms can be broadly divided into classifica-
tion and segmentation tasks.
With appropriate segmentation, the DL algorithm can

extract and delineate the structures or lesions in OCT
scans, then provide the surface areas or volumes of
abnormal regions. Lee et al. applied a CNN model for
segmentation of intraretinal fluid in OCT scans, which
showed robust performance for interrater reliability
between human observers and the algorithm [81].
Another group of patients was assessed regarding the
need for urgent referral, using segmentation and classifi-
cation algorithms. The system could transfer three-di-
mensional OCT scans into a tissue map and the patients
were able to view the video showing the lesion, which
sets a new benchmark for future efforts to solve the
‘black box’ problem of neural networks. Notably, the
algorithm detected all urgent referral cases within the
patient cohort [82]. With the development of DL, some
researchers have extended their algorithms to perform
segmentation of pigment epithelium detachment, fluid
and vessels [83–85].
OCT has become increasingly important in disease

detection, prognostication, and surveillance in AMD
patients, especially those with wet AMD requiring anti-
vascular endothelial growth factor (anti-VEGF). A ML
method was proposed to predict the need for anti-VEGF
treatment based on OCT scans taken during the intake
examination. The results showed that classifications of
low- and high-treatment requirement subgroups demon-
strated AUCs of 0.7 and 0.77, respectively [86]. Treder
et al. showed that a DL algorithm exhibited good per-
formance for automated detection of AMD in spectral
domain OCT [87]. This pilot study was an important
step toward automated image-guided prediction of treat-
ment intervals in patients with neovascular AMD.
Additionally, OCT can quantitatively measure struc-

tural parameters by scanning the thickness of the retinal

nerve fiber layer (RNFL), which is recognized as the
earliest structure being implicated in glaucoma [88],
since the changes are often detectable before visual field
loss [89]. ML classifiers have shown substantial diagnos-
tic accuracy for detection of RNFL thickness measure-
ments obtained by OCT [90, 91]. Moreover, algorithms
have been developed for the use of OCT parameters to
classify the optic disc in patients with open-angle
glaucoma [92].
Because DL methods incorporate millions of parame-

ters, the success of these methods largely depends on
the availability of large datasets [93]. A DL-based com-
puter-aided system was used to detect DR in a small
sample of patients (52 OCT scans), achieving an AUC of
0.98 [94]. Transfer learning is an algorithm that enables
the application of cumulative knowledge learned from
other datasets to a new task [95]; this algorithm is highly
effective with respect to the application of DL, particu-
larly in the context of limited data [63]. An AI diagnostic
tool based on a transfer learning algorithm could distin-
guish OCT images with choroidal neovascularization or
diabetic macular edema from those of normal retina
with an AUC of 98.9% [96].
Recent research involved analysis of a unique combin-

ation of retinal OCT and MRI images; the findings indi-
cated that retinal OCT might provide insights for early
diagnosis of neurodegeneration in the brain, including
Alzheimer’s disease [97]. Taken together, the results of
the above studies highlight the accuracy of diagnostic
evaluation using AI.

Slit-lamp images
The slit lamp, a high-intensity light source instrument, is
used to shine a thin beam of light into the eye, enabling
examination of the anterior and posterior segments of
the eye. It is applied mainly for wide illumination of
much of the eye and its adnexa for general observation.

Table 4 Common publicly available databases

Datasets Imaging Modalities Population Amount Annotation

Kaggle FP United States 53,576 DR

EyePACS [54] FP United States 35,126 DR

MESSIDOR [54] FP France 1200 DR; Macular edema

E-OPHTHA [69] FP France 463 DR

HRF [70] FP Germany 45 DR; Glaucoma; Optic Disk; Vessel;

DRIVE FP Netherlands 40 DR; Vessel

RIGA [71] FP France; Saudi Arabia 760 Glaucoma

ORIGA-650 [72] FP Singapore 650 Glaucoma

DRISHTI-GS [73] FP India 101 Glaucoma

INSPRIRE-AVR [74] FP United States 40 Glaucoma

REVIEW [75] FP United Kingdom 16 Vascular disease

FP = fundus photograph; DR = diabetic retinopathy
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In recent years, several studies have investigated and
made contributions to the grading and classification of
senile cataracts by using slit-lamp images. Huang et al.
[98] proposed a ranking method based on slit-lamp
images and achieved acceptable grading for nuclear cata-
racts; this could potentially reduce the clinical burden of
experienced ophthalmologists. Fan et al. [99] developed
an automatic grading system for nuclear sclerosis based
on slit-lamp photographs, using linear regression; the
grades predicted by that algorithm were statistically
reliable. Li et al. [100] extracted important feature
landmarks from slit-lamp images and trained an SVM
regression model to automatically predict grades of
nuclear cataract.
Slit-lamp images are essential in the diagnosis of con-

genital cataracts, a major cause of childhood blindness
[101–103]. Compared with senile cataract, the pheno-
type of congenital cataract is far more complicated. Slit-
lamp images show heterogeneity among cataract patients
as well as complexity in their ocular images [104, 105].
In addition, some DL methods for grading and classi-

fying slit-lamp images have shown effective results [106,
107]. Lin and colleagues’ team developed a prototype
diagnostic and therapeutic system (CC-Cruiser) for
pediatric cataract screening by using preprocessed ocular
images and a DCNN [108]; they compared the perfor-
mances of multiple DL and conventional ML methods
from various perspectives [109, 110]. CC-Cruiser has
been used in the Ophthalmic Center of Sun Yat-sen
University with an accuracy comparable to that of oph-
thalmologists. Lin and colleagues also built a collabora-
tive cloud-based multihospital AI platform to integrate
rare disease data and provide medical suggestions for
non-specialized doctors and remote hospitals without
advanced equipment. These efforts addressed significant
needs in cataract research and may provide a basis for
using AI to analyze other ophthalmic images.
With the continual increase in the amount of data

available for AI analysis as well as the potential for AI to
identify diseases, ophthalmic medical imaging has moved
from a strictly conceptual and perceptual approach to
more objective methodology. The enhanced efficiency
provided by AI is likely to allow ophthalmologists to
perform more value-added tasks. In this review, we
summarized studies on FP and OCT using DL tech-
niques on diseases with high incidences (Table 5).

Challenges and future considerations
Despite promising findings thus far, there remain chal-
lenges and limitations to using AI [138]. First, the quality
of input images is inherently variable, primarily because
there is a lack of uniform imaging annotation, and there
is variability in ocular characteristics among patients. In
addition, inter-expert variability in clinical decision

making is an important issue which has been well-docu-
mented [139]. High inconsistency among experts in the
interpretation of ophthalmic images may introduce bias
during model training. Secondly, due to the heavy work-
load of manual annotation, the number of images with
clinical annotations is extremely scarce. Hence, advanced
image annotation tools should be developed to gather
clinical annotations (such as localization of exudates and
retinal hemorrhages). Semi-supervised learning method
attempts to make full use of unlabeled samples to
improve the performance of model generalization. Third,
given the complexity of diseases, sufficient data are
needed to build high-accuracy models; however, data for
more severe stages of disease, as well as for rare diseases,
are often insufficient. Fourth, the current application of AI
in ophthalmology mainly focuses on single images of a
single disease, whereas combined diagnosis using multiple
imaging techniques is needed to evaluate diseases in a syn-
ergistic manner. Finally, ensuring the security and privacy
of medical data is an important challenge that has not
been entirely resolved.
In the future, healthcare systems with minimal staff may

benefit from modern automated imaging. The inclusion of
intelligence within ophthalmic devices may enable health-
care professionals to provide better patient care. Further-
more, AI systems may be embedded within ophthalmic
imaging devices for real-time image diagnosis (e.g., portable
fundus cameras and smartphones) with minimal operator
expertise. Emerging multimodal imaging techniques, which
coincide with improved intelligent algorithms, enable joint
training from complementary modalities that have different
strengths. This embedded AI will be enabled by improved
hardware performance with decreasing cost. With the
increasing employment of AI in medical care, patients
could be self-screened without supervision before an
ophthalmologist appointment. Besides, patients in remote
areas could receive routine eye examinations and undergo
monitoring of disease progression without the intervention
of highly skilled operators. Increasing the interpretability of
networks will be another important research direction. The
“black box” problem has been identified as an obstacle to
the application of DL in healthcare. Existing studies have
developed novel algorithms that enable clinicians to inspect
and visualize the decision process (e.g., OCT tissue-seg-
mentation), rather than simply obtaining a diagnosis
suggestion [82]. In terms of treatment, the research on
ophthalmic robots needs further exploration; there have
been studies on robotic intraretinal vascular injection and
anterior macular surgery.

Conclusions
With the unprecedented progress of computer and im-
aging technologies, medical imaging has developed from
an auxiliary examination to the most important method
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Table 5 Summary of DL methods using FP and OCT to detect eye disease
Authors Year Imaging

Modalities
Aim Data sets DL techniques Performance

Arcadu F
et al. [111]

2019 FP Diabetic macular thickening
detection

Local:
17,997 FPs

Inception-v3 AUC:
0.97 (central subfield thickness ≥ 250 μm)
0.91 (central foveal thickness ≥ 250 μm)
0.94 (central subfield thickness ≥ 400 μm)
0.96 (central foveal thickness ≥ 400 μm)

Nagasawa T
et al. [112]

2019 FP Treatment-naïve proliferative
diabetic retinopathy detection

Local:
132 FPs

VGG-16 Sensitivity: 94.7%
Specificity: 97.2%
AUC: 0.969

Phan S
et al. [113]

2019 FP Glaucoma detection Local:
3312 FPs

VGG-19
ResNet-152
DenseNet-201

AUCs of 0.9 or more (3 DCNNs)

Nagasato D
et al. [114]

2019 FP Branch retinal vein occlusion
detection

Local:
466 FPs

VGG-16
SVM

Sensitivity: 94.0%
Specificity: 97.0%
positive predictive value (PPV): 96.5%
negative predictive value (NPV): 93.2%
AUC: 97.6%

Burlina PM
et al. [115]

2019 FP To develop DL techniques for
synthesizing high-resolution
realistic fundus images

Local:
133,821 FPs

GAN AUC:
0.9706 (model trained on real data)
0.9235 (model trained on synthetic data)

Girard F
et al. [116]

2019 FP Joint segmentation and
classification of retinal arteries
and veins

Public:
DRIVE, 40 FPs
MESSIDOR, 1200 FPs

CNN Accuracy: 94.8%
Sensitivity: 93.7%
Specificity: 92.9%

Coyner AS
et al. [117]

2018 FP Image quality assessment
of fundus images in ROP

Local:
6043 FPs

VGG-19 DCNN Accuracy: 89.1%
AUC: 0.964

Keel S
et al. [118]

2018 FP Detection of referable
diabetic retinopathy and
glaucoma

Public:
LabelMe, 114,906 FPs
(referable DR)

Sensitivity:
90% (glaucomatous optic neuropathy)
96% (referable DR)

Sayres R
et al. [119]

2018 FP Assist grading for DR Public:
EyePACS, 1796 FPs

Inception v-4 Sensitivity:
79.4% (unassisted)
87.5% (grades only)
88.7% (grades plus heatmap)

Peng Y
et al. [120]

2018 FP Automated classification
of AMD severity

Public:
AREDS, 59302 FPs

DeepSeeNet
(Inception v-3)

Accuracy: 0.671
AUC:
0.94 (large drusen)
0.93 (pigmentary abnormalities)
0.97 (late AMD)

Guo Y
et al. [121]

2018 FP Retinal vessel detection Public:
DRIVE, 20 FPs
STARE, 20 FPs

Multiple DCNNs Accuracy:
95.97% (DRIVE training dataset)
96.13% (DRIVE testing dataset)
95.39% (STARE dataset)
AUC:
0,9726 (DRIVE training dataset)
0.9737 (DRIVE testing dataset)
0.9539 (STARE dataset)

Khojasteh P
et al. [122]

2018 FP Detection of exudates,
microaneurysms and
hemorrhages

Public:
DIARETDB1, 75 FPs
e-Ophtha, 209 FPs

CNN Accuracy:
97.3% (DIARETDB1 dataset)
86.6% (e-Ophtha)
Sensitivity:
0.96 (exudates)
0.84 (hemorrhages)
0.85 (microaneurysms)

Gargeya R
et al. [123]

2017 FP Automated identification of DR Public:
EyePACS, 75,137
FPs MESSIDOR 2, 1748
E-Ophtha, 463 FPs

DCNN Sensitivity: 94%
Specificity: 98%
AUC: 0.97

Burlina PM
et al. [63]

2017 FP Automated grading of AMD Public:
AREDS, more than 130,000 FPs

DCNN Accuracy:
88.4% (SD, 0.5%)-91.6%
(SD, 0.1%)
AUC: 0.94 (SD, 0.5%)-0.96
(SD, 0.1%)

Ordóñez PF
et al. [124]

2017 FP To improve the accuracy of
microaneurysms detection

Public:
Kaggle, 88,702 FPs
Messidor, 1200 FPs
DiaRerDB1, 89 FPs

Standard CNN
VGG CNN

Sensitivity > 91%
Specificity > 93%
AUC > 93%
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for clinical and differential diagnosis in modern medi-
cine. High-accuracy models suggest that ML can effect-
ively learn from increasingly complicated images with a
high degree of generalization, using a relatively small
repository of data [68]. To some extent, AI may
revolutionize disease diagnosis and management by
performing classifications of difficult images for clinical
experts, as well as by rapidly reviewing large amounts of
images. Compared with evaluations by humans, AI has
advantages in terms of information integration, data pro-
cessing, and diagnostic speed. Most AI-based

applications in medicine are still in early stages; AI in
medical care may ultimately aid in expediting the diag-
nosis and referral of ophthalmic diseases through cross-
disciplinary collaborations of clinicians, engineers, and
designers.
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Table 5 Summary of DL methods using FP and OCT to detect eye disease (Continued)
Authors Year Imaging

Modalities
Aim Data sets DL techniques Performance

Takahashi H
et al. [58]

2017 FP Improving staging of DR Local:
9939 FPs

GoogleNet
DCNN

Prevalence and bias-adjusted
Fleiss’kappa (PABAK):
0.64 (modified Davis grading)
0.37 (real prognosis grading)

Abbas Q
et al. [125]

2017 FP Automatic recognition of
severity level of DR

Local:
750 FPs

DCNN Sensitivity: 92.18%
Specificity: 94.50%
AUC: 0.924

Pfister M
et al. [126]

2019 OCT Automated segmentation of
dermal fillers in OCT images

Local:
100 OCT volume data sets

CNN
(U-net-like
architecture)

Accuracy:
0.9938

Fu H
et al. [127]

2019 OCT Automated angle-closure
detection

Local:
4135 anterior segment OCT images

CNN Sensitivity: 0.79 ± 0.037
Specificity: 0.87 ± 0.009
AUC: 0.90

Masood S
et al. [128]

2019 OCT Automatic choroid layer
segmentation from OCT
images

Local:
525 OCT images

CNN
(Cifar-10 model)

Accuracy: 97%

Dos Santos
VA et al.
[129]

2019 OCT Segmentation of cornea
OCT scans

Local:
20,160 OCT images

CNN Accuracy: 99.56%

Asaoka R
et al. [130]

2019 OCT Diagnosis early-onset
glaucoma from OCT images

Local:
4316 OCT images

CNN AUC: 93.7%

Lu W
et al. [131]

2018 OCT Classification of multi-categorical
abnormalities from OCT images

Local:
60,407 OCT images

ResNet Accuracy: 0.959
AUC: 0.984

Schlegl T
et al. [132]

2018 OCT Detection of macular fluid in
OCT images

Local:
1200 OCT scans

CNN Intraretinal cystoid fluid detection:
Accuracy: 0.91
AUC: 0.94
Subretinal fluid detection:
Accuracy: 0.61
AUC: 0.92

Prahs P
et al. [133]

2018 OCT Evaluation of treatment
indication with anti-vascular
endothelial growth factor
medications

Local:
183,402 OCT scans

GoogleNet
inception
DCNN

Accuracy: 95.5%
Sensitivity: 90.1%
Specificity: 96.2%
AUC: 0.968

Shah A
et al. [134]

2018 OCT Retinal layer segmentation in
OCT images

Local:
3000 OCT scans

CNN Average computation time: 12.3 s

Chan GCY
et al. [135]

2018 OCT Automated diabetic macular
edema classification

Public:
Singapore Eye Research
Institute, 14,720 OCT scans

AlexNet, VGG,
GoogleNet

Accuracy: 93.75%

Muhammad
H et al. [136]

2017 OCT Classification of glaucoma
suspects

Local:102 OCT scans CNN, Random
forest

Accuracy: 93.1% (retinal
nerve fiber layer)

Lee CS
et al. [81]

2017 OCT Segmentation of macular
edema in OCT

Local:1289 OCT images U-Net CNN cross-validated Dice
coefficient: 0.911

Lee CS
et al. [137]

2017 OCT Classification of normal and
AMD OCT images

Public:Electronic medical records,
101,002 OCT images

VGG-16 Accuracy: 87.63%
AUC: 92.78%

DL = deep learning; FP = fundus photography; OCT = optical coherence tomography; CNN = convolution neural network; DCNN = deep convolution neural
network; DR = diabetic retinopathy; AMD = age-related macular degeneration; AUC = area under the curve
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