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Excimer laser 6th generation: state of the art
and refractive surgical outcomes
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Abstract

After nearly three decades of innovation in excimer laser, today we are presented with a state of the art generation
targeting minimally invasive refractive surgery with high speed laser, faster trackers, pupil monitoring systems and
better customization profiles. These systems are capable of delivering better treatments with less induced
postoperative high order aberrations. The results reported by many authors had confirmed the superiority in
efficiency and safety profiles of this generation compared to previous generations. Still, current technology is facing
major challenges in the correction of high hyperopic errors and in presbyopic treatments, with upgrades in ablation
centration and thermal control needed, which will ensure better biomechanical results, as a step closer to
perfection in refractive surgery.
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Introduction
The birth and evolution of excimer laser refractive
surgery
The concepts of modern refractive surgery witnessed its
breakthrough when Professor Jose I. Barraquer described
in 1949 his coined technique of keratomeliosis, setting
the foundation for all following innovation in this field.
The name excimer laser came as an abbreviation of “ex-
cited dimer”, introduced by the Russian, Nikolay Basov,
in 1970 using a xenon dimer gas [1]. Few years later, the
argon-fluoride excimer laser was developed and was first
tried on an organic tissue by IBM scientists. The intro-
duction of excimer laser to be used in the human eye
was done by Stephen Trokel as a precise and safe tool of
corneal shaping, these concepts later defined the refract-
ive techniques widely used now, when Marguerite
McDonald under the supervision of Steve Kaufmann,
performed the most commonly used epithelium removal
technique photorefractive keratectomy (PRK). Peyman,
presented the first patency of using excimer laser as a
corneal refractive tool, and it was accepted in Jun 1989
(personal correspondence Gholam Peyman). Following
Ioannis Pallikaris, among others, introduced the most
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widely used and commonly accepted technique of laser
in situ keratomeliosis (LASIK) in 1990 [1].
Several ophthalmic authorities had set the benchmark

for laser keratorefractive surgery; The Food and Drug
Administration (FDA) based on data presented by sev-
eral evidence based reviews, defined the correction limi-
tation of excimer laser (Table 1) [2]. The American
Academy of Ophthalmologist (AAO) reports stated that
the substantial level II and III evidence proved that
excimer laser refractive surgery whether LASIK or PRK,
is a safe and effective tool of correcting the full spectrum
of refractive errors but with some limitations in high
hyperopic refractive errors [2,3].
The previous lasers were presented with a number of

limitations, where treatment of hyperopia and to a
greater extent presbyopia, represented the fundamental
challenge as the biomorphological and biomechanical
corneal structure and architecture seem to render the
planned correction [4]. Early broad beam lasers were
associated with Laser-induced deviations from the
intended uniform corneal profiles, increasing depth abla-
tion and therefore decreased the predictability of the re-
fractive outcomes [5]. The variations in energy of the
laser beam that could happen during a refractive surgical
procedure also reduced refractive predictability, fluctua-
tions noted between two series of pulses averaged
11.02%, tending to decrease progressively till the end of
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Table 1 FDA Indications for LASIK and PRK: [2]

LASIK PRK

Myopia Less than −14.0 D with
or without astigmatism
between −0.50 and −5.00 D

Up to −12.0 D with
or without astigmatism
up to −4.00 D

Hyperopia Up to + 5.00 D with
or without astigmatism
up to +3.00 D

Up to +5.00 D with
or without astigmatism
up to +4.00 D

Mixed astigmatism Astigmatism up to 6.00 D,
cylinder is greater than
sphere and of opposite sign.

[2] AAO Refractive Management/Intervention PPP Panel, Hoskins Center for
Quality Eye Care. Refractive Errors & Refractive Surgery PPP – 2013. 2013.
Retrieved (May 8, 2014) from: http://one.aao.org/preferred-practice-pattern/
refractive-errors—surgery-ppp-2013.
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the treatment and the total loss of energy was 45.16%
[6]. Another major limitation is biological interactions,
as wound healing responses are thought to be a key fac-
tor limiting the predictability of refractive surgery in
some patients and may contribute to some of the com-
plications, including haze formation [7]. Also a central
island is a type of astigmatism that occurs after laser re-
fractive surgery. It is generally defined as a central area
of steeper corneal tissue having increased refractive
power [8]. This evolutional technology that passed by
several generations demonstrated in (Table 2).

Review
Sixth generation excimer lasers
This generation of excimer laser platforms can be de-
fined as an excimer laser delivery system that targets the
goal of minimally invasive laser refractive surgery by re-
ducing the amount of time and tissue ablated with a fas-
ter laser system, delivering more laser spots per second,
Table 2 Features of the successive generations of Excimer
Lasers

1st Generation: Pre-clinical (Touton, VISX, Summit)

2nd Generation: Broad beam laser, fixed optical zone

3rd Generation: Broad beam laser, variable optical zone,
multizone treatment

4th Generation: Flying spot laser, built in tracker,
hyperopic treatment

5th Generation: Customised wavefront (guided,
optimised) treatments

6th Generation: • Faster ablation rates & tracking systems

• Lower biological interaction

• More variables under control

• Pupil size

• Advanced ablation profiles

• Ciclotorsion control

• Online pachymetry

Original Table.
with a faster treatment time, through the ability of ablat-
ing more corneal tissue in a given time (Table 3) [9-11].
The 6th generation lasers speed varies from 400 to
1050 Hz, being 400 Hz in Wavelight Eye-Q up to
1050 Hz in Schwind Amaris. On average, a 500 Hz plat-
form will reduce the time needed per diopter ablation in
a 6.5 mm optical zone from 7–10 seconds using older
generation laser platforms to an effective 4 seconds [12].
Another feature to reduce treatment time is the ad-
vanced fluence level adjustment system, in which a mix
of high and low fluence levels are used. High fluence
level will perform 80% of corneal ablation, while low flu-
ence will be used for fine correction, improving reso-
lution, with remarkable precision in high refractive
errors (Figure 1).
The reduction of induced aberrations, is a critical

trend in modern laser refractive surgery, 6th generation
platforms feature advanced ablation profiles, with the re-
duction of spot size as a key factor of control of the in-
duced aberration; which is 0.54 mm and 0.68 mm for
Schwind Amaris and Allegretto Eye-Q respectively, com-
pared to a spot size of 0.8 mm or more for conventional
excimer lasers. Also, these profiles are able to correct
pre-existing optical aberration through integrated cus-
tomized and wavefront ablation technology. The effi-
ciency of the previous features requires extremely
accurate laser spot placement, in which the eye tracker
latency time is of only 1.6 milliseconds (ms). A conven-
tional laser platform eye tracker will have a capturing
rate of 60 to 330 Hz, able to detect the pupil position at
4000 Hz, with a response time of 36 ms, clearly not fast
enough for a high speed laser platform of a speed reach-
ing 700 Hz. The new five dimensional turbo speed
tracker have an acquisition speed of 1050 Hz generating
a response rate less than 3 ms with unique rotational
balance, tracking both the pupil and the limbus [13].
A conventional eye tracker adjusts eye movements

into an X and Y-axis linear movement, and lasers are
able to follow eye rolling, through translation of these
linear movements into rotations with the help of an eye
model, so that these generated rotations can be followed
and compensated. Modern eye trackers do not only fol-
low these horizontal and vertical displacements of the
eye but also track the cyclotorsional rotations. These
cyclorotations can be classified into static cyclorotation
component (SCC); occurs when the patients move from
an upright to a supine position and a dynamic cyclorota-
tion component (DCC); which occurs during the treat-
ment procedure [14].
The high repetition rate of excimer lasers may result

in shorter interval between laser pulses on the same area
of the cornea, increasing the thermal load on the cornea
and resulting in thermal damage, as a safety feature, a
recent generation laser will use an intelligent thermal
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Table 3 Comparison between 6th generation Excimer platforms

Company Schwind Nidek WaveLight

Model Amaris Navex Quest AllegrettoEye-Q

Laser type ArF ArF ArF

Laser beam Flying Spot Slit scanning + variable spot-size scanner Flying spot

Beam profile Super-Gaussian Flat Top Gaussian

Pulse rate 500-700 Hz 6 scans/sec.60 Hz max 400-700 HZ

Pulse duration 10 ns 25 ns 10 ns

Peak fluence 160 mJ/cm2 - 450 mJ/cm2 130 mJ/cm2 400 mJ/cm2

Beam size 0.54 mm 10 x2 mm scanning slit (1 mm for
customized and hyperopia)

0.68 mm

Spot size (cornea) 0.54 mm 1.0 mm 0.95 mm (1.2 mm)

Optical zone (OZ) 4 - 10 mm 6.5 mm 4.5 mm - 8 mm

Ablation zone Optimized 8 mm 9 mm

Ablation profile Aspheric (aberration free) Munnerlyn with aspheric tansition zone Aspheric (including Q-value)

Transition zones
adjustable

No Yes Yes

Static Cyclo-Torsion Yes Yes Pseudo, yes

Dynamic Cyclo-Torsion Yes Yes (TEC = torsion error correction) Pseudo, yes

Cyclo-Torsion, Sampling
Rate

36 Hz 30 Hz NR

Ablation depth per
shot (cornea)

0.42 μm - 0.68 μm 0.32 μm 0.65 μm

Ablation volume per
shot (cornea)

110 pl -220 pl 250 pl N/A

Ablation depth per
diopter (6.5 mm OZ)

16.4 μm 15 μm 15.3 μm

Time per diopter
(6.5 mm OZ)

<2.5 ms 5 s 3 s

Ablation depth -5dpt/
OZ = 6 mm

65 μm (12 s) 63 μm 65 μm

Eye tracking system Active video tracking (SMI) Active video tracking (SMI) Active video tracking (SMI)

Sampling rate 1050 Hz 1050 Hz 400 Hz

Eye tracker
response time

<3 ms 4 ms 4 ms

Cyclo-Torsion,
Resolution

Static ±15° Dynamic ± 7° NR NR

X-Y & Z-tracking Active Active No

Presbyopic treatment No Yes No

Online pachymetry Yes - integrated No No

Eye fixation Green LED Yes LED

Centration of pupil Automatic, user defined Manual User defined

Laserhead/Lasersource Coherent Lambda TUI

FluenceTest
needed every:

2 hours NR Before every treatment day

Fluence & Calibration Automatic and objective Manual and subjective Manual and subjective

Capable of customized
ablation

Yes Yes Yes

Ocular wavefront Yes Yes Yes

Method used for
wavefront

Hartmann - Shack Yes Tscherning Principle
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Table 3 Comparison between 6th generation Excimer platforms (Continued)

Topographic system Corneal Wavefront
Analyzer/CSO

Topographer retinoscopy Yes Oculus

Topgraphic link Yes (Corneal wavefront) Yes (OPD-scan) Yes (topographic based on Zernike)

Dimensions (LxWxH) 264 × 144 × 136 cm
(including patient bed)

137 × 151.6 × 147 cm 120 × 145 × 130 cm (without patient bed)

Weight (without
patient bed)

550 kg 650 kg 265 kg (without bed and gas) patient
bed 188 kg

Website: last visited
May 2014

http://www.schwind-amaris.
com/en/home/

http://www.nidek-intl.com/products/
ref_surgical/navex-quest.html

http://www.alconsurgical.com/wavelight-
allegretto-wave-eye-q-laser.aspx

[9] SCHWIND eye-tech-solutions: The SCHWIND AMARIS family. Retrieved (May 1, 2014) from: http://www.schwind-amaris.com/en/home/.
[10] ALCON surgical: Wave Light® Allegretto Wave® Eye-Q Laser. Retrieved (May 1, 2014)
from: http://www.alconsurgical.com/wavelight-allegretto-wave-eye-q-laser.aspx.
[11] NIDEK CO., LTD: NIDEK advanced vision excimer laser system NAVEX Quest. Retrieved (May 1, 2014)
from: http://www.nidek-intl.com/products/ref_surgical/navex-quest.html.

9

10

11

Figure 1 Three 6th generation excimer laser platforms.
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effect control to significantly reduce the heating effect
on the cornea, the area around the applied laser spot is
blocked for a certain time allowing the cornea to cool
down, this will generate a dynamic thermally optimized
distribution of the laser pulses, with enough time for
each spot to cool down between pulses. The thermal
load from refractive corrections using a 500 Hz laser
with a fluence of 500 mJ/cm2 was recorded with an in-
frared thermography camera to analyze and evaluate
each single in vivo measurement; the overall maximum
temperature change induced by the refractive ablations
was ≤4°C, the increase in the peak temperature of the
ocular surface never exceeded 35°C, and this low ther-
mal load was independent of the amount of correction
the eye achieved [15].
Another safety feature is the automatic monitoring of

the pupil size, as illumination is automatically adjusted
in such a way that the pupil is exactly the same size at
the start of the treatment as it was on the preoperative
examination. Finally, the integrated online pachymetry
in these state of the art platforms will display the corneal
thickness in real time, with the ability to monitor the
targeted measurements before and after flap lifting
as well as during and after laser ablation, which is
documented in the treatment log at the end of the
procedure [9-11].

Outcomes of 6th generation lasers
Our studies focused on the promised safety and accur-
acy of the new platforms (Table 4) [13,14,16-23] in my-
opic correction through two separate reports of patients
with high myopia of −8.50 D or more. In the first study,
we studied 29 eyes of 17 patients, with a mean age of
36.65 ± 10.80 years, and a mean spherical equivalent (MSE)
of −8.39 ± 0.93 D, after 6 months follow up. We found the
efficacy of the treatment to be 89.6% within ±1.00 D of tar-
get refraction, and post operative high order aberrations
(HOA) to be 0.95 ± 0.80 μm [13]. We confirmed the results
with a larger sample in a second study, to show an efficacy
of 84.3% within ±0.5 D of target refraction [18]. At the
same time, Arba-Mosquera et al. published results of the
3 month follow up of 30 eyes with a mean spherical
equivalent (MSE) of −4.27 ± 1.62 D showing a mean re-
sidual spherical equivalent of −0.07 ± 0.25 D and postoper-
ative HOA of 0.425 ± 0.129 μm [14]. Later on, Tomita
et al. used a larger sample of 10235 eyes of 5191 patients.
In this study, the MSE was −5.02 ± 2.17 D and follow up
results up to 3 months showed an efficacy index of 1.00;
88.4% within ±0.50 D of target refraction and a safety index
of 1.03; 96.9% achived 0.0 LogMAR or better, and postop-
erative HOA were 0.70 ± 0.23 μm [17]. The previous stud-
ies were conducted on the AMARIS excimer laser
platform of SCHWIND eye-tech-solutions, Kleinostheim,
Germany. Kanellopoulos et al. reported his results with the
Alcon-WaveLight EX500 excimer laser by (Alcon Labora-
tories, Fort Worth, TX), where he followed 58 patients
who underwent bilateral surgery for 12 months. The pre-
operative MSE was −7.67 ± 1.55 D, and his results showed
100% were within 1.0 D defocus equivalent with a kerato-
metric stability of 0.22 D [24].
The small spot hyperopic laser in situ keratomileusis

(H-LASIK) ablation at the periphery of the cornea pro-
ducing certain degrees of steepness. This treatment mo-
dality had several limitations as decentration, decrease in
best corrected visual acuity (BCVA), high frequency for
the need of retreatments, residual refractive errors and
induction of astigmatism due to the high levels of cor-
neal aberrations as negative spherical aberration, all
cause loss of the efficiency of treatments and changes in
biomechanics of the cornea [20]. Our studies included a
sample of 51 eyes in 28 patients of a MSE of +5.64 ±
0.93 D followed up for 6 months, we reported an efficacy
of 70.37% within ±0.5 D of target refraction, the HOA
postoperatively was −0.44 ± 0.22 μm, with a efficacy and
safety index of 0.85 and 0.94 respectively [19]. Another
6 months retrospective follow up of 51 eyes with a
spherical equivalent of more than 5.5 D showed signifi-
cant increase in corneal root mean square (RMS) HOA,
RMS spherical aberration (SA) and RMS coma were also
observed six months after surgery (p < 0.01). Corneal
asphericity for the 4.5 mm (Q45) and 8 mm (Q8) of cor-
neal diameter also changed significantly during the post-
operative period (p < 0.01). Strehl ratio change was not
statistically significant (p = 0.77) [25]. Arbelaez et al.
published a study with MSE +3.02 ± 2.06 D (astigmatism
was +1.36 ± 1.61 D), they reported 6 months follow up
with a mean postoperative increase in HOA of 0.18 μm
(P < 0.05), 89% were within ±0.5 D of the target refrac-
tion and 94% were ±0.5 D of target astigmatism [20].
Kanellopoulos used a larger sample of 202 eyes with a
longer follow up of 2 years to demonstrate the safety
and efficacy of topography guided ablation using a
400 Hz WaveLight excimer laser by (Alcon Laboratories,
Fort Worth, TX). In his study the MSE was +3.04 ± 1.75
D, the results showed that the mean refraction spherical
equivalent was ±0.50 D of target refraction in over 80%
of cases, with an increase in the RMS of 15% [26].
Patients’ satisfaction after refractive surgery, wavefront

guided or not, is primarily dependent on the successful
treatment of lower order aberrations of the sphere and
cylinder of the eye. LASIK has been successful in the
correction of mild to moderate myopic astigmatism, but
with limited reports on the efficacy, predictability and
safety of it in higher myopic astigmatism in the terms of
astigmatic correction of HOA, with limitation of retreat-
ments needed [12]. We reported the 3 months follow up
of 52 eyes of mixed astigmatism of more than 3 D, in
which the efficacy was 65.3% within ±1.0 D of target



Table 4 Outcomes of the AMARIS-SCHWIND 6th generation excimer laser

Author Number
of patients

Number
of eyes

Mean age
(years)

Gender
(female/male)

MSE (D) HOA (μm) Efficacy Efficacy
index

Safety
index

Fellow up
(months)

Myopic Patients

Tomita et al. [16] 685 1280 34 ± 8 (18–65) 371/314 −4.89 ± 2.12
(−0.5 to −11.63)

0.66 ± 0.20 96.6 % 20/20 1.02 1.06 3

94.1% ±0.5 D

Tomita et al. [17] 5191 10235 33.9 ± 7.89 2428/2763 −5.02 ± 2.17
(−2.75 to 11.50)

0.70 ± 0.23 96.9% 0.0 LogMAR 1 1.03 3

88.4% ±0.5 D

Vega-Estrada
et al. [13]

17 29 36.65 ± 10.80 N/A −8.39 ± 0.93 0.95 ± 0.8 89.6% ±1.00 D NR Not reported 6

0.11 ± 0.26 LogMAR

Alió et al. [18] 32 51 23-61 N/A ≥ − 8.5 NR 84.3% ±0.5 D NR Not reported 6

Arba-Mosquera
et al. [14]

NR 30 33 (19–49) 53/47 −4.27 ± 1.62
(−7.38 to −1.38)

0.425 ± 0.129
(P < 0.01)

0.47 ± 0.72 lines
(P < 0.05)

NR Not reported 3

−0.07 ± 0.25
(−0.63 to +0.50)

Hyperopic Patients

Alió et al. [19] 28 51 Not reported NR +5.64 ± 0.93
(3.50 to 7.88)

−0.44 ± 0.22
(P = 0.00)

70.37% ±0.5 D 0.85 0.94 6

Arbelaez et al. [20] 50 100 37 (21–59) 54% Females +3.02 ± 2.06
(+0.13 to +5.00)
+1.36 ± 1.61 (Ast.)
(0.00 to 5.00)

↑ 0.18
(P < 0.05)

90% 20/20 0.89 1.1 6

89% ±0.5 D

94% ±0.5 (Ast.)

Astigmatic Patients

Alió et al. [21] 36 52 21-53 NR Mixed Ast. > 3.0 NR 65.3% ±1.0 D NR Not reported 3

Arbelaez et al. [22] 200 360 NR NR −0.14 ± 0.31 ↑ 0.09 97% ±0.5 D NR 65% No
changes

6

+0.25 ± 0.37 (Ast.)

Arbelaez et al. [23] NR 358 NR NR −3.13 ± 1.58 ↑ 0.09 98% 20/20 NR Not reported 6

−0.69 ± 0.67 (Ast.) 96% ±0.5 D

MSE: mean spherical equivalent, HOA: high order aberrations, Ast.: astigmatism, NR: not reported, N/A: not available.
↑: increase in high order aberrations.
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refraction [21]. Earlier, Arbelaez et al. published a num-
ber of reports, with an average of 1.26 ± 3.29 D of astig-
matism, and with 6 months follow up found an
increase of 0.09 μm with a residual astigmatism 0.50 ±
0.26 D (P < 0.0001) [12,22,23]. The mean decrease of
astigmatic magnitude in these reports was 93%, indicating
a slight under correction of the preoperative astigmatism,
but with marked improvements from the 36% to 91% re-
ported with the use of older excimer laser platforms
[27,28]. Also, recent reports showed a 100% efficacy
within ±0.25 D after 12 months [24]. Topography-guided
hyperopic astigmatism correction showed a correction of a
mean preoperative cylinder value of −1.24 ± 1.41 D to the
respective postoperative value of −0.35 ± 0.25 D [26].
New platforms had shown similar satisfactory results

with PRK. Aslanides et al. in his 2 years follow up of 80
eyes with mild to high myopia and myopic astigmatism
found 91% to be within ±0.5 D of target refraction, but re-
ported a statistically significant increase in postoperative
coma (+0.12 μm) and spherical aberration (+0.14 μm)
compared to preoperative values (P < 0.001, both cases)
when performed using the SCHWIND AMARIS [29,30].

Challenges facing excimer laser refractive surgery today
In spite of the astonishing progress in the field of laser
refractive surgery, a number of challenges are still facing
the technology. One of the most critical is the limita-
tions in the visual and optical outcomes in patients with
high hyperopic refractive errors, as most authors re-
ported a significant induction of the corneal HOA, most
significantly in the RMS coma [19,20].
The efficacy of the excimer laser technology even with

latest platforms in the treatment of presbyopia is still the
subject of great debate. PresbyLASIK has been described
in three different approaches to create multifocality: the
transitional multifocality, the central presbyLASIK and
the peripheral presbyLASIK. Both central and peripheral
techniques reportedly obtained adequate spectacle inde-
pendence for near and for far with a degree of neuroa-
daptation process needed in peripheral techniques. An
intentional increase in coma aberrations was noticed in
transitional multifocality giving it a range of very limited
use and outcomes. The level of scientific evidence we
already have is enough to consider presbyLASIK as a
useful tool in the correction of presbyopia [31]. Epstein
et al. reported a 4 years follow up of 103 patients who
underwent peripheral presbyLASIK, 89% of hyperopes
and 92% of myopes was completely spectacle independ-
ent, with distance unaided visual acuity of 20/20 in
67.9% of hyperopes and 70.7% in myopes. They also re-
ported that the overall increase in the HOA was mani-
fested to a greater extent in hyperopic cases [32]. Other
programs as The Supracor presbyopia procedure showed
good near visual acuity outcomes over 6 months follow
up, but loss of corrected distance visual acuity (CDVA)
occurred in 39.1% of eyes, also reported in PresbyMAX
[33]. At 1 year, 70% of patients achieved uncorrected
distance visual acuity (UDVA) 0.1 logMAR or better,
84% patients obtained uncorrected near visual acuity
(UNVA) 0.1 logRAD or better, and 83% of eyes were
within 0.75 D of defocus [34].
Ablation centration is a major issue in the excimer laser

development, the decentration of ablation can lead to
under correction and irregular astigmatism, which is most
important in hyperopic patients [35,36], who tend to have
a larger angle kappa values [35]. There are four main
methods of centration in laser refractive surgery that has
been suggested in literature; center of the pupil, coaxially
sighted corneal light reflex (CSCLR), corneal vertex normal
and between the pupillary and visual axis [37]. Many
reports had demonstrated that pupil-centered and vertex-
centered treatments provide similar visual and optical out-
comes. However, in eyes showing large temporal pupil
decentration, pupil-centered ablation seemed to produce a
lower amount of coma and consequently, a reduced loss of
BCVA compared with vertex-centered patients [26,38,39].
One of the other challenges is the limitation facing

wavefront-customized treatment. Despite decreases in
spot size of up to 0.5 mm and thermal damage control
limitations still exist, mainly through the biomechanical
changes induced by the wound healing patterns [40]. It
was reported that one month after treatment, corneal
hysteresis and the corneal resistance factor decreased
significantly from 10.44 to 9.3 mmHg and from 10.07 to
8.13 mm Hg, respectively [41]. So, when looking to
customization as the planning of the most optimum abla-
tion pattern specifically for each individual eye based on
its diagnosis and visual demands, the best approach is a
sophisticated pattern [22]. As wavefront guided treatment
may increase the HOA up to 100%, as the induction
related to the baseline levels of HOAs, is more significant
in patients with less than 0.3 μm or greater than 0.3 μm
of HOA. But results of this customized treatment still
showed promising results as Arbelaez et al. reported an
average change in coma from 0.38 μm to 0.31 μm (a 19%
decrease) (P = 0.04), in trefoil from 0.35 μm to 0.12 μm (a
66% decrease) (P = 0.0005), and in spherical aberration
from +0.14 μm to +0.08 μm (a 48% decrease) (P = 0.02)
[22]. Furthermore, when comparing a small spot scan-
ning laser and a variable spot scanning laser, Yu et al.
reported in his study of 50 patients, in which one eye of
each patient was treated by the small spot laser using
Allegretto Wave Eye-Q system and the other with the
variable-spot scanning laser of Visx Star CustomVue S4
IR system; the small-spot scanning laser group had
significantly less spherical aberration (0.12 versus 0.15)
and significantly less mean total higher-order RMS
(0.33 μm versus 0.40 μm) [42].
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Patient satisfaction with the results of treatment with
the recent excimer laser was remarkable. Kyprianou
et al. reported a 100% satisfaction in 32 patients,
with average age of 31.9 years and a preoperative
MSE of −3.05 D. This was evaluated by a question-
naire consisting of 21 questions. Patients were most
satisfied in questions concerning quality of vision,
distance vision, when watching TV and driving dur-
ing daytime and during the night [43].

Conclusion
In summary, the latest generation of excimer laser plat-
forms had introduced a large number of features as
faster laser, smaller spot size, a high speed tracker, pupil
monitoring and online pachymetry, all of which provided
superior treatment with significant improvement of in-
duced post operative HOA and control of thermal dam-
age. This technology is still facing major limitations in
terms of high hyperopic, presbyopic treatments, along
with difficulties in laser centration along with the limita-
tion of the customized treatments, generated by the bio-
mechanical patterns of wound healing [44].
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