Skip to main content

Table 3 Summary of studies utilizing multimodal AI approaches in diabetic retinopathy

From: Advances and prospects of multi-modal ophthalmic artificial intelligence based on deep learning: a review

Year

Author

Task

Multimodal data types

Dataset scale

Dataset availability

2020

Li X et al. [58]

Fundus disease classification

Fundus images, synthesized FFA images

1200 images in [55]; 1200 images in [56]; 88,702 images in [57]

Free available after registration in https://ichallenges.grand-challenge.org/, https://www.kaggle.com/competitions/diabetic-retinopathy-detection/data

2021

He X et al. [59]

Fundus disease classification

Fundus images, OCT images

933 eyes of 498 patients

Private dataset

2021

Li X et al. [60]

Retinal disease Recognition

Fundus images, OCT images

1,193 eyes of 836 subjects

Private dataset

2022

Hervella Á et al. [61]

Diabetic retinopathy classification

Fluorescein angiography and color retinography

59 multimodal image pairs

Freely available from http://misp.mui.ac.ir/data/eye-images.html

2023

El Habib Daho M et al. [65]

Diabetic retinopathy

classification

Ultra-widefield color fundus images and OCTA images

875 eyes from 444 patients

Upon request

2023

Li Y et al. [66]

Detection of proliferative diabetic retinopathy

OCT and OCTA images, fundus images

64 patients with diabetes

Private dataset

2024

Bidwai P et al. [67]

Diabetic classification

OCTA images and fundus images

222 images of 76 people

Upon request

  1. FFA = fundus fluorescein angiography; OCT = optical coherence tomography; OCTA = optical coherence tomography angiography